scholarly journals Histological study of the effects of aluminum chloride exposure on the brain of wistar rats female

2020 ◽  
Vol 10 (3-s) ◽  
pp. 37-42
Author(s):  
Hadjer Bekhedda ◽  
Norredine Menadi ◽  
Abbassia Demmouche ◽  
Abdelaziz Ghani ◽  
Hicham Mai

Introduction: Aluminum (Al) has the potential to be neurotoxic in human and animals, is present everywhere in the environment, many manufactured foods and medicines and is also added to drinking water for purification purposes and tooth paste cosmetic products They accumulate in living organisms and disrupt balances, and accumulate in the body biological systems, causing toxic effects (They may affect the nervous system, kidney, liver, respiratory or other functions). Nervous system is a vulnerable target for toxicants due to critical voltages which must be maintained in the cells and the all responses when voltages reach threshold levels. Objective This study aimed to expose the impact of aluminum chloride (AlCl3) on brain architecture. Methods: In our study, twenty healthy female rats were intraperitoneal administered of aluminum chloride (ALCL3) at 10 mg / kg body weight with consecutively for 15 day Result. The results showed a highly significant reduction in body weight (p<0.0001).  This is because aluminum has an anorectic effect contrariwise, there is no significant impact of aluminium exposure has been observed with respect to brain weight and relative brain weight respectively (p<0.912), (p<0.45). The histological study describes the alterations in the brain marked tissue necrosis and cytoplasmic vacuolations and karyopyknosis of neuronal cells of the brain. Conclusion; Aluminum is a toxic heavy metal and a ubiquitous environmental pollutant. It can alter the permeability of the blood-brain barrier and enter the brain, severely affecting the functioning of the nervous system. Keywords: Toxicity, brain, Aluminium chloride, Rats female, necrosis.

2007 ◽  
Vol 293 (3) ◽  
pp. R1056-R1062 ◽  
Author(s):  
Jacqueline Férézou-Viala ◽  
Anne-France Roy ◽  
Colette Sérougne ◽  
Daniel Gripois ◽  
Michel Parquet ◽  
...  

Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (−12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Nawel Attoui ◽  
Farid Berroukeche ◽  
Kamilia Guedri ◽  
Fethi Toul

The present study’s objective was to evaluate the impact of Bunium incrassatum roots’ powder (Talghouda) as a dietary supplement on the evolution of biological, biochemical, and histological parameters in female Wistar rats. The animals were divided into two groups and given an orally standard diet supplemented with 15% of Bunium incrassatum roots powder, daily for 15 days. The obtained results showed that the roots of Bunium incrassatum induced an increase in the body and organs weight of Diet rats compared to the control, as well as effects on the biochemical parameters, characterized mainly by a significant increase in the glycaemia (+44.44%), triglyceride (+56.81%), cholesterol (+11.90%), LDL (+4.08%) and HDL (+11.53%)and a decrease in creatinine (-3.65%), TGO (-6.92%) and TGP (-58.73%). In the histological study of organs, the thyroid of diet rats revealed large thyroid follicles, the colloid of the follicles was more or less developed compared to the control rats. Through the obtained results, it can be concluded that a standard diet supplemented with 15% of Bunium incrassatum roots powder may have a positive effect on biological, biochemical, and histological parameters


1996 ◽  
Vol 271 (3) ◽  
pp. R491-R500 ◽  
Author(s):  
B. E. Levin ◽  
V. H. Routh

Energy balance and body weight are regulated in short, intermediate, and long cycles that are superimposed on each other. We propose that the brain is the primary center of this regulation. The brain has evolved mechanisms for sensing the energy status of the body using neural and metabolic signals such as glucose, insulin, and leptin. It has central processing and storage capacity for handling this afferent information and can change both structurally and functionally in response to its internal and external milieu. The brain regulates energy balance through its control of energy intake on the one hand and expenditure and storage on the other using neurohumoral mechanisms that include the autonomic nervous system. Work in animal models suggests that the brain of obese individuals largely ignores signals of excess adiposity from the periphery, keeping the body weight set point at pathologically high levels. Disordered regulation of neuropeptide Y and monoamine metabolism within the ventromedial hypothalamus is a consistent finding in the brains of obesity-prone and obese rodents. Such dysregulation causes inappropriate neurohumoral control of metabolism and autonomic output to organs such as the pancreas, resulting in increased metabolic efficiency and persistent adiposity. The high recidivism rate in the treatment of obesity suggests that central dysfunction may be due to long-term reorganization of the nervous system in such a way as to perpetuate the abnormally high set point of body weight.


2018 ◽  
Vol 18 (2) ◽  
pp. 171-175
Author(s):  
Ashraf A. ◽  
Hassan F. ◽  
Batool S. ◽  
Nadeem M. ◽  
Irshad M. ◽  
...  

The objective of present study was to analyze and compare the nephroprotective effects of petroleum ether extracts of seeds of Nigella sativa and Silybum marianum in Swiss albino mice. Petroleum ether extracts of seeds of Nigella sativa and Silybum marianum were administered (200 mg kg–1) orally for 14 days following one dose of cisplatin injection (16 mg kg–1 i.p.) on 4th day. Cisplatin toxicity was identified in mice by loss of body weight, reduced triglycerides levels, elevated blood glucose, blood urea nitrogen and creatinine levels (P < 0.05). Silybum marianum and Nigella sativa significantly enhanced the body weight (9%) of diabetic rats. Silybum marianum had significantly reduced the elevated blood glucose (–106%), and BUN levels (–9%) as compared to the Nigella sativa administration. Silybum marianum extract also significantly elevated the levels of triglycerides (257%) which were much reduced after the cisplatin injection. Histological study showed that the cisplatin treated group demonstrated the necrosis signs in the glomerulus of Bowman’s capsule, hyalinization and severe cellular damage. The animals administered with extracts showed nearly normal kidney architecture, however, the kidney tissues of Silybum marianum-treated animals showed some improvement with slight signs of cellular damages.


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Author(s):  
Pablo A. Scacchi Bernasconi ◽  
Nancy P. Cardoso ◽  
Roxana Reynoso ◽  
Pablo Scacchi ◽  
Daniel P. Cardinali

AbstractCombinations of fructose- and fat-rich diets in experimental animals can model the human metabolic syndrome (MS). In rats, the increase in blood pressure (BP) after diet manipulation is sex related and highly dependent on testosterone secretion. However, the extent of the impact of diet on rodent hypophysial-testicular axis remains undefined. In the present study, rats drinking a 10% fructose solution or fed a high-fat (35%) diet for 10 weeks had higher plasma levels of luteinizing hormone (LH) and lower plasma levels of testosterone, without significant changes in circulating follicle-stimulating hormone or the weight of most reproductive organs. Diet manipulation brought about a significant increase in body weight, systolic BP, area under the curve (AUC) of glycemia after an intraperitoneal glucose tolerance test (IPGTT), and plasma low-density lipoprotein cholesterol, cholesterol, triglycerides, and uric acid levels. The concomitant administration of melatonin (25 μg/mL of drinking water) normalized the abnormally high LH levels but did not affect the inhibited testosterone secretion found in fructose- or high-fat-fed rats. Rather, melatonin per se inhibited testosterone secretion. Melatonin significantly blunted the body weight and systolic BP increase, the increase in the AUC of glycemia after an IPGTT, and the changes in circulating lipid profile and uric acid found in both MS models. The results are compatible with a primary inhibition of testicular function in diet-induced MS in rats and with the partial effectiveness of melatonin to counteract the metabolic but not the testicular sequelae of rodent MS.


2020 ◽  
Vol 11 (5) ◽  
pp. 489-509
Author(s):  
R. Cheng ◽  
H. Liang ◽  
Y. Zhang ◽  
J. Guo ◽  
Z. Miao ◽  
...  

This study aimed to determine the impact of Lactobacillus plantarum PC170 concurrent with antibiotic treatment and/or during the recovery phase after antibiotic treatment on the body weight, faecal bacterial composition, short-chain fatty acids (SCFAs) concentration, and splenic cytokine mRNA expression of mice. Orally administrated ceftriaxone quantitatively and significantly decreased body weight, faecal total bacteria, Akkermansia muciniphila, and Lactobacillus plantarum, and faecal SCFAs concentration. Ceftriaxone treatment also dramatically altered the faecal microbiota with an increased Chao1 index, decreased species diversities and Bacteroidetes, and more Firmicutes and Proteobacteria. After ceftriaxone intervention, these changes all gradually started to recover. However, faecal microbiota diversities were still totally different from control by significantly increased α- and β-diversities. Bacteroidetes all flourished and became dominant during the recovery process. However, mice treated with PC170 both in parallel with and after ceftriaxone treatment encouraged more Bacteroidetes, Verrucomicrobia, and Actinobacteria, and the diversity by which to make faecal microbiota was very much closer to control. Furthermore, the expression of splenic pro-inflammatory cytokine tumour necrosis factor-α mRNA in mice supplemented with PC170 during the recovery phase was significantly lower than natural recovery. These results indicated that antibiotics, such as ceftriaxone, even with short-term intervention, could dramatically damage the structure of gut microbiota and their abilities to produce SCFAs with loss of body weight. Although such damages could be partly recovered with the cessation of antibiotics, the implication of antibiotics to gut microbiota might remain even after antibiotic treatment. The selected strain PC170 might be a potential probiotic because of its contributions in helping the host animal to remodel or stabilise its gut microbiome and enhancing the anti-inflammatory response as protection from the side effects of antibiotic therapy when it was administered in parallel with and after antibiotic treatment.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2679
Author(s):  
Lihuai Yu ◽  
Hongmin Li ◽  
Zhong Peng ◽  
Yuzhu Ge ◽  
Jun Liu ◽  
...  

This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.


Sign in / Sign up

Export Citation Format

Share Document