scholarly journals The influence of El-Nino on microclimate change and soil water content in Gambung tea plantation

2016 ◽  
Vol 19 (1) ◽  
Author(s):  
Erdiansyah Rezamela ◽  
Salwa Lubnan Dalimoenthe

The very strong intensity of 2015 El-Nino affected on microclimate change and soil water content of Gambung Tea Plantation. The observation results indicated that in the year of 2015 Gambung was experienced four dry months (with rainfall <60 mm), with maximum air temperature 30,8ºC and air humidity dropped to 65%. These condition were not suitable for tea plant to grow well, which normally required two dry months at minimum (rainfall < 60 mm), air temperature of 18–25ºC, and with relative humidity of above 70%. The affected areas by drought were present in a map (see Figure 3 of the text). About 65% of the total blocks (north section about 80% and south section about 50%) of Gambung tea plantation were affected by drought. The worst affected were blocks A6 (north section) and B8 (south section). In these blocks, about 54.70% of plant were in normal growth condition; 14.65% were in temporary and permanent wilting status; 25.34% in the state of dropping their leaves; 5.19% of the plants with dried buds twigs, and 0.12% with dried twigs and dried old branches. The soil water content (at 10 cm depth) in these blocks dropped to 7.02% and 4.99% from normally required at minimum 30%.

2019 ◽  
Vol 12 (4) ◽  
pp. 1291
Author(s):  
Henderson Silva Wanderley ◽  
Ronabson Cardoso Fernandes ◽  
André Luiz De Carvalho

O processo de urbanização tem o potencial de alterar a característica térmica e aerodinâmica da superfície dos grandes centros urbanos, possibilitando o aumento da temperatura do ar. No entanto, a correlação da intensificação da temperatura do ar em áreas urbanas em resposta a um evento extremo de El Niño é escassa, principalmente no que se refere à cidade do Rio de Janeiro. Assim, o objetivo deste estudo visa quantificar as mudanças ocorridas na temperatura do ar (máxima e mínima) na cidade do Rio de Janeiro e o desvio ocasionado às temperaturas extremas durante um evento de El Niño intenso. Os dados de temperatura do ar utilizados referem-se às normais climatológicas nos períodos climatológicos de 1961-1990 e 1980-2010, comparados entre si, e posteriormente, comparou-se as normais climatológicas do período de 1980-2010 com as do El Niño intenso de 2015-2016. Para a análise, dados de temperatura mínima e máxima do ar em uma escala mensal foram comparados. As médias mensais das temperaturas em análise foram submetidas ao ajuste do coeficiente de correlação de Pearson, ao teste t de Student e ao teste de Kolmogorov-Smirnov. Os resultados mostraram um aumento médio na temperatura do ar mínima (máxima) de +0,66 °C e +0,73 °C (+1,21 °C e +0,90 °C), respectivamente entre os períodos climatológicos e o último período climatológico com o evento El Niño intenso, entretanto, sem diferença estatística para o aumento da média e de sua distribuição.   A B S T R A C TUrbanization process has potential to change the thermal and aerodynamic characteristics of large urban centers surface, allowing the increase of air temperature. However, correlation of air temperature intensification in urban areas in response to an extreme event of El Niño is scarce, especially in relation to the city of Rio de Janeiro. Thus, the objective of this study is to quantify the changes occurred in the air temperature (maximum and minimum) in the city of Rio de Janeiro and the deviation caused to extreme temperatures during an intense event of El Niño. Data of air temperature data refer to the climatological normals in the periods of 1961-1990 and 1980-2010, and intense event of El Niño occurred in 2015-2016. For the analysis, minimum and maximum air temperature data on a monthly scale were compared. Monthly mean values of the air temperature under analysis were adjusted to the Pearson correlation coefficient, Student's t-test and Kolmogorov-Smirnov test. The results showed a mean increase in minimum (maximum) air temperature of +0.66 °C and +0.73 °C (+1.21 °C and +0.90 °C), respectively between the climatological periods and the last climatological period with the intense event of El Niño, however, with no statistical difference for the increase of the mean and its distribution.Keywords: Urban climate, ENSO, air temperature.


2018 ◽  
Vol 2 (1) ◽  
pp. 28-48
Author(s):  
Napsiah Heluth ◽  
J. Matinahoru ◽  
Fransina Latumahina

The research study aims to determine the ecological conditions of dusung and non dusung, and the role of the contribution to environmental conservation in Ureng Village. The research method used was purposive sampling with observation parameters were microclimate (CO2 content, air temperature, humidity), vegetation conditions and soil conditions (soil temperature, soil moisture, soil pH, soil moisture content, soil macrofauna and organic C) . The results of  Paired of each parameter measured mostly show a smaller calculated t value compared to the t0.05 table value (1.8595) which means that the parameter is not a real difference, ie for the air humidity, t count = 0.27,; soil pH, t count = 0.6; soil macrofauna, t count = -0.66 and vegetation, t count = 1.01. As for the parameters of CO2; air temperature, soil temperature, , soil water content and organic C, t value of CO2 gives the value t count = - 16.06; air temperature = -5.11; soil temperature = -3.62; soil moisture, t count = 2,16; soil water content = 8.47, and C-Organic = 8.53; t count value which is greater than t table value which shows that there is a significant difference between CO2, air temperature, soil temperature, soil moisture, soil water content and C-Organic content in the dusung area which is greater than in the non-dusung area. From the results of the analysis it is known that dusung has a better role in environmental conservation when compared to non dusung which is indicated by the value of CO2 air temperature, soil temperature, soil moisture, soil water content and C-organic content.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Weiwei Cong ◽  
Kaijie Yang ◽  
Feng Wang

Northern hemisphere evergreen needleleaf forest (ENF) contributes a significant fraction of global water exchange but regional transpiration (T) observation in ENF ecosystems is still challenging. Traditional remote sensing techniques and terrestrial biosphere models reproduce the transpiration seasonality with difficulty, and with large uncertainties. Solar-induced chlorophyll fluorescence (SIF) emission from vegetation correlates to photosynthesis at multiple spatial and temporal scales. However, how SIF links to transpiration of evergreen forest during seasonal transition is unclear. Here, we explored the relationship between canopy SIF and T retrieved from ground observation towers in ENF. We also examined the role of meteorological and soil factors on the relationship between SIF and T. A slow decrease of SIF and T with a fast reduction in photosynthetically active radiation (PAR), air temperature, vapor pressure deficit (VPD), soil temperature and soil water content (SWC) were found in the ENF during the fall transition. The correlation between SIF and T at hourly and daily scales varied significantly among different months (Pearson correlation coefficient = 0.29–0.68, p < 0.01). SIF and T were significantly linearly correlated at hourly (R2 = 0.53, p < 0.001) and daily (R2 = 0.67, p < 0.001) timescales in the October. Air temperature and PAR were the major moderating factors for the relationship between SIF and T in the fall transition. Soil water content (SWC) influenced the SIF-T relationship at an hourly scale. Soil temperature and VPD’s effect on the SIF-T relationship was evident at a daily scale. This study can help extend the possibility of constraining ecosystem T by SIF at an unprecedented spatiotemporal resolution during season transitions.


2016 ◽  
Vol 13 (5) ◽  
pp. 1621-1633 ◽  
Author(s):  
Miguel Portillo-Estrada ◽  
Mari Pihlatie ◽  
Janne F. J. Korhonen ◽  
Janne Levula ◽  
Arnoud K. F. Frumau ◽  
...  

Abstract. Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6–11.4 °C in annual temperature 511–878 mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (Mr). Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 778C-778
Author(s):  
Kun Xu* ◽  
Xiufeng Wang ◽  
Fang Wang

Mulching with straw increase soil water content, air relative humidity and air temperature, but decreased soil temperature. Though mulching with straw didn't change light intensity, ginger growth and yield were the same as shading. The growth and yield under shading and mulching with straw were both higher than that of naked soil.


1979 ◽  
Vol 59 (1) ◽  
pp. 153-162 ◽  
Author(s):  
C. R. SUMAYAO ◽  
E. T. KANEMASU

A field study was conducted during the 1977 growing season to determine the effect of soil-water content on the air temperature within and above the soybean canopy and consequently on the leaf temperature and stomatal resistance of soybeans (Glycine max L. ’Calland’). Leaf temperature at two heights and air temperature at five heights within and above the canopy were measured with copper-constantan thermocouples while stomatal resistances were measured with an automatic porometer. At soil-water depletions <65%, a daytime air-temperature inversion occurred within and above the canopy, while at depletions >65% air temperature decreased with height. In the first case the canopy temperature was cooler than the air above the canopy when air temperature exceeded 32 °C and the lower canopy leaves were cooler than the upper canopy leaves when they were completely shaded by the upper leaves. At soil-water depletions greater than 65% the canopy was warmer than the air and the lower canopy leaves were warmer than the upper canopy leaves. Stomatal resistance, on the other hand, decreased with height within the canopy irrespective of soil-water content.


Author(s):  
Wenju Zhao ◽  
Yali Wang ◽  
Junhong Hu ◽  
Zongli Li

Abstract Gravel mulching is an ancient mulching system with a history of more than 300 years in China. To explore the changes of soil-water content (SWC) and heat transport in watermelon gravel-mulched fields under the drip irrigation, we simulated three irrigation quotas (W1, 180 m3/hm2; W2, 270 m3/hm2; and W3, 360 m3/hm2) and three irrigation frequencies (F1, three times; F2, six times; and F3, nine times) based on HYDRUS-2D. The results indicated that peak SWC increased with irrigation quota. The range of fluctuation of SWC decreased as irrigation frequency increased. The temperature of the 0–40 cm soil layer varied with air temperature, but the range of fluctuation decreased with depth. Irrigation affected the distribution of soil water, increased soil heat capacity, and reduced the impact of air temperature on soil temperature, thus delaying the impact of air temperature on soil temperature. High-frequency drip irrigation could therefore effectively improve SWC, reduce water stress during the period of watermelon growth, and effectively delay the effect of air temperature on soil temperature, providing a theoretical basis for developing reasonable irrigation strategies and regulating soil water and heat in gravel-mulched fields.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


Sign in / Sign up

Export Citation Format

Share Document