Causes of gear pump fails and methods for their elimination

Author(s):  
Vitaliy A. Zuyevskiy ◽  
Daniil O. Klimyuk ◽  
Ivan A. Shemberev

Gear pumps are an important element of many production systems and their replacement in case of failure can be quite expensive, so it is important to have a modern and well-tuned technology for their recovery. There are many methods for restoring the pump's performance, depending on the reason that led to its failure. (Research purpose) The research purpose is in determining what causes most often lead to loss of pump performance, and developing a recovery method that provides the greatest post-repair service life of the pump and low cost of repair. (Materials and methods) Authors took into account that the applied coatings must have sufficient adhesion strength and resistance to mechanical, thermal and corrosion loads during operation. It was found that most often significant leaks of the working fluid, leading to failure, occur due to an increase in the gap between the inner surface of the housing and the gears due to active wear of the housing wells. Authors determined that the method of electric spark treatment of worn-out housing wells is best suited to perform the task (a large post-repair resource and low costs). (Results and discussion) It was found by laboratory studies of the adhesion strength of electric spark coatings with various electrodes that the best transfer of the material to the substrate is provided by bronze electrodes BrMKts3-1. It was noted that the coatings applied using the BrMKts3-1 electrode have high strength properties. (Conclusions) Research conducted in the center for collective use "Nano-Center" VIM confirmed the possibility of effective recovery of the gear pump by electric spark treatment.

Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


Alloy Digest ◽  
1966 ◽  
Vol 15 (7) ◽  

Abstract INCONEL alloy X-750 is an age-hardenable, nickel-chromium alloy used for its corrosion and oxidation resistance and high creep rupture strength at temperature up to 1500 F. It also has excellent properties at cryogenic temperatures. It was originally developed for use in gas turbines, but because of its low cost, high strength and weldability it has become the standards choice for a wide variety of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-115. Producer or source: Huntington Alloy Products Division, An INCO Company.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


Author(s):  
Dinar R. Masalimov ◽  
Roman R. Galiullin ◽  
Rinat N. Sayfullin ◽  
Azamat F. Fayurshin ◽  
Linar F. Islamov

There are a number of difficulties in the electrical contact welding of powder materials: shedding of powder from the surface of a cylindrical part, impossibility of hardening the layer during welding due to flushing of the powders with coolant and unstable flow of powder into the welding zone. One solution is pre-spraying the powder in some way. (Research purpose). The research purpose is investigating the possibility of electric contact welding of metal powders preliminarily sprayed by a gas-flame method, namely, adhesion strength and losses during preliminary gas-flame spraying of powders. (Materials and methods) Powders of grades PG-NA-01, PrKhIIG4SR, PRZh3.200.28 were sprayed onto flat samples of St3 steel, polished to a roughness of Ra 1.25. The strength of powder adhesion to the base was studied by the cut method. (Results and discussion) The percentage loss of the powder as a whole is 3-23 percent for all the distances studied. The greatest powder losses appear at a distance of more than 180 millimeter from the tip of the burner for powders of grades PG-NA-01 and PrKhIIG4SR. The smallest powder losses were observed for PrZh3.200.28 powder, which totaled 3-7 percent. The maximum adhesion strength of the sprayed powders to the surface was 22.1 megapascals' when spraying the PG-NA-01 powder. The adhesion strength of powders of the grades PrKhIIG4SR and PrZh3.200.28 is small and amounts to 0.2-3 megapascals'. (Conclusions) The use of preliminary flame spraying of powders for their further electric contact welding is possible using PG-NA-01 grade powder, while the best adhesion to the base (that is more than 20 megapascals') is achieved with a spraying distance of 120-140 millimeter. The smallest powder losses during flame spraying are achieved at a spraying distance of 100-160 centimeters', at which the powder loss for the studied grades was 4-12 percent.


Author(s):  
Vyacheslav A. Denisov ◽  
Aleksandr Yu. Kostyukov ◽  
Roman N. Zadorozhniy

One of the most promising technologies for restoring machine parts and cylinder liners is electric spark treatment as the most versatile technology that provides high-quality restoration of worn parts with wear up to 0.5 mm. (Research purpose) The research purpose is in developing a technology for restoring various cylinder liners by means of electric spark processing, selecting optimal modes and electrode materials that allow improving the quality of repair and increasing the post-repair life of the sleeve. (Materials and methods) It was taken into account when conducting research aimed at restoring the geometric parameters of the sleeve, that the coating must have sufficient adhesion strength to the surface of the sleeve under mechanical, thermal loads and long-term operation. Laboratory studies of the adhesion strength of electric spark coatings on the separation (adhesive) and on the cut, as well as tribotechnical studies of interfaces were conducted. Authors have found by analyzing the results of operational tests of restored and new cylinder liners the prospects for using electric spark treatment of worn parts, including diesel engine liners. (Results and discussion) It was shown by laboratory studies of the adhesion strength of electric spark coatings with a 0.2 mm thick BrMKc 3-1 electrode to the working surface of cylinder liners that their separation strength (adhesive) was 20-40 megapascals, and the shear strength (cohesive) was 50-80 megapascals. It was found that this provides the required functional strength of coatings with maximum operational load. The article presents the results of comprehensive research in graphs and tables. (Conclusions) The research conducted in the CCP "Nano-Center" of the FSAC VIM and operational tests in the 2nd bus fleet of Moscow confirmed the principal possibility of effectively restoring cast iron liners (blocks) using the technology of electric spark processing.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Adam M. Breister ◽  
Muhammad A. Imam ◽  
Zhichao Zhou ◽  
Md Ariful Ahsan ◽  
Juan C. Noveron ◽  
...  

AbstractPolymer composites are attractive for structural applications in the built environment due to their lightweight and high strength properties but suffer from degradation due to environmental factors. While abiotic factors like temperature, moisture, and ultraviolet light are well studied, little is known about the impacts of naturally occurring microbial communities on their structural integrity. Here we apply complementary time-series multi-omics of biofilms growing on polymer composites and materials characterization to elucidate the processes driving their degradation. We measured a reduction in mechanical properties due to biologically driven molecular chain breakage of esters and reconstructed 121 microbial genomes to describe microbial diversity and pathways associated with polymer composite degradation. The polymer composite microbiome is dominated by four bacterial groups including the Candidate Phyla Radiation that possess pathways for breakdown of acrylate, esters, and bisphenol, abundant in composites. We provide a foundation for understanding interactions of next-generation structural materials with their natural environment that can predict their durability and drive future designs.


Sign in / Sign up

Export Citation Format

Share Document