scholarly journals Large area photon detectors for large-scale neutrino physics experiments: single large area PMTs and multi small PMTs.

2021 ◽  
Author(s):  
Sultim Lubsandorzhiev
2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2000 ◽  
Vol 624 ◽  
Author(s):  
Lingling Wu ◽  
Hongjun Gao ◽  
Dennis M. Manos

ABSTRACTA large-scale plasma source immersion ion implantation (PSII) system with planar coil RFI plasma source has been used to study an inkless, deposition-free, mask-based surface conversion patterning as an alternative to direct writing techniques on large-area substrates by implantation. The apparatus has a 0.61 m ID and 0.51 m tall chamber, with a base pressure in the 10−8 Torr range, making it one of the largest PSII presently available. The system uses a 0.43 m ID planar rf antenna to produce dense plasma capable of large-area, uniform materials treatment. Metallic and semiconductor samples have been implanted through masks to produce small geometric patterns of interest for device manufacturing. Si gratings were also implanted to study application to smaller features. Samples are characterized by AES, TEM and variable-angle spectroscopic ellipsometry. Composition depth profiles obtained by AES and VASE are compared. Measured lateral and depth profiles are compared to the mask features to assess lateral diffusion, pattern transfer fidelity, and wall-effects. The paper also presents the results of MAGIC calculations of the flux and angle of ion trajectories through the boundary layer predicting the magnitude of flux as a function of 3-D location on objects in the expanding sheath


Author(s):  
Hai Wang ◽  
Baoshen Guo ◽  
Shuai Wang ◽  
Tian He ◽  
Desheng Zhang

The rise concern about mobile communication performance has driven the growing demand for the construction of mobile network signal maps which are widely utilized in network monitoring, spectrum management, and indoor/outdoor localization. Existing studies such as time-consuming and labor-intensive site surveys are difficult to maintain an update-to-date finegrained signal map within a large area. The mobile crowdsensing (MCS) paradigm is a promising approach for building signal maps because collecting large-scale MCS data is low-cost and with little extra-efforts. However, the dynamic environment and the mobility of the crowd cause spatio-temporal uncertainty and sparsity of MCS. In this work, we leverage MCS as an opportunity to conduct the city-wide mobile network signal map construction. We propose a fine-grained city-wide Cellular Signal Map Construction (CSMC) framework to address two challenges including (i) the problem of missing and unreliable MCS data; (ii) spatio-temporal uncertainty of signal propagation. In particular, CSMC captures spatio-temporal characteristics of signals from both inter- and intra- cellular base stations and conducts missing signal recovery with Bayesian tensor decomposition to build large-area fine-grained signal maps. Furthermore, CSMC develops a context-aware multi-view fusion network to make full use of external information and enhance signal map construction accuracy. To evaluate the performance of CSMC, we conduct extensive experiments and ablation studies on a large-scale dataset with over 200GB MCS signal records collected from Shanghai. Experimental results demonstrate that our model outperforms state-of-the-art baselines in the accuracy of signal estimation and user localization.


2013 ◽  
Vol 1530 ◽  
Author(s):  
A. Bendavid ◽  
L. Wieczorek ◽  
R. Chai ◽  
J. S. Cooper ◽  
B. Raguse

ABSTRACTA large area nanogap electrode fabrication method combinig conventional lithography patterning with the of focused ion beam (FIB) is presented. Lithography and a lift-off process were used to pattern 50 nm thick platinum pads having an area of 300 μm × 300 μm. A range of 30-300 nm wide nanogaps (length from 300 μm to 10 mm ) were then etched using an FIB of Ga+ at an acceleration voltage of 30 kV at various beam currents. An investigation of Ga+ beam current ranging between 1-50 pA was undertaken to optimise the process for the current fabrication method. In this study, we used Monte Carlo simulation to calculate the damage depth in various materials by the Ga+. Calculation of the recoil cascades of the substrate atoms are also presented. The nanogap electrodes fabricated in this study were found to have empty gap resistances exceeding several hundred MΩ. A comparison of the gap length versus electrical resistance on glass substrates is presented. The results thus outline some important issues in low-conductance measurements. The proposed nanogap fabrication method can be extended to various sensor applications, such as chemical sensing, that employ the nanogap platform. This method may be used as a prototype technique for large-scale fabrication due to its simple, fast and reliable features.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7422
Author(s):  
Min-Kyu Son

Upscaling of photoelectrode for a practical photoelectrochemical (PEC) water splitting system is still challenging because the PEC performance of large-scale photoelectrode is significantly low, compared to the lab scale photoelectrode. In an effort to overcome this challenge, sputtered gold (Au) and copper (Cu) grid lines were introduced to improve the PEC performance of large-scale cuprous oxide (Cu2O) photocathode in this work. It was demonstrated that Cu grid lines are more effective than Au grid lines to improve the PEC performance of large-scale Cu2O photocathode because its intrinsic conductivity and quality of grid lines are better than ones containing Au grid lines. As a result, the PEC performance of a 25-cm2 scaled Cu2O photocathode with Cu grid lines was almost double than one without grid lines, resulting in an improved charge transport in the large area substrate by Cu grid lines. Finally, a 50-cm2 scaled Cu2O photocathode with Cu grid lines was tested in an outdoor condition under natural sun. This is the first outdoor PEC demonstration of large-scale Cu2O photocathode with Cu grid lines, which gives insight into the development of efficient upscaled PEC photoelectrode.


MRS Bulletin ◽  
1998 ◽  
Vol 23 (9) ◽  
pp. 16-21 ◽  
Author(s):  
Dieter M. Gruen ◽  
Ian Buckley-Golder

Carbon in the form of diamond is the stuff of dreams, and the image of the diamond evokes deep and powerful emotions in humans. Following the successful synthesis of diamond by high-pressure methods in the 1950s, the startling development of the low-pressure synthesis of diamond films in the 1970s and 1980s almost immediately engendered great expectations of utility. The many remarkable properties of diamond due in part to its being the most atomically dense material in the universe (hardness, thermal conductivity, friction coefficient, transparency, etc.) could at last be put to use in a multitude of practical applications. “The holy grail”—it was realized early on—would be the development of large-area, doped, single-crystal diamond wafers for the fabrication of high-temperature, extremely fast integrated circuits leading to a revolution in computer technology.Excitement in the community of chemical-vapor-deposition (CVD) diamond researchers, funding agencies, and industrial companies ran high in expectation of early realization for many of the commercial goals that had been envisioned: tool, optical, and corrosion-resistant coatings; flat-panel displays; thermomanagement for electronic components, etc. Market projection predicting diamond-film sales in the billions of dollars by the year 2000 was commonplace. Hopes were dashed when these optimistic predictions ran up against the enormous scientific and technical problems that had to be overcome in order for those involved to fully exploit the potential of diamond. This experience is not new to the scientific community. One need only remind oneself of the hopes for cheap nuclear power or for high-temperature superconducting wires available at hardware stores to realize that the lag between scientific discoveries and their large-scale applications can be very long. Diamond films are in fact being used today in commercial applications.


2020 ◽  
Vol 04 (05) ◽  
pp. 44-48
Author(s):  
Narmin Zakir Najafova ◽  

Factors influencing the formation of land cover of Jalilabad cadastral region are one of the reasons for the diversity of soil formation processes in the area. Intra-zonal soils are subject to the laws of vertical zoning due to changes in the height of the area due to its geographical distribution. Despite the fact that the Jalilabad cadastral region does not have a very large area, its separate parts are characterized by differences in bioclimatic and biogeochemical characteristics. The article shows the analysis and geographical coordinates of the main soil types formed in the Jalilabad cadastral region on the basis of a large-scale land map, depending on the soil-ecological conditions. In order to carry out comparative and ecological assessment of soils, we have made land plots in the study area. Currently, the cut samples are in the laboratory stage for physical and chemical analysis in accordance with the methodology. Key words: soil type, mechanical composition, soil structure, soil profile, GPS


2021 ◽  
Vol 03 (01) ◽  
pp. 88-93
Author(s):  
Nərmin Zakir qızı Nəcəfova Zakir qızı Nəcəfova ◽  

Factors influencing the formation of land cover of Jalilabad cadastral region are one of the reasons for the diversity of soil formation processes in the area. Intra-zonal soils are subject to the laws of vertical zoning due to changes in the height of the area due to its geographical distribution. Despite the fact that the Jalilabad cadastral region does not have a very large area, its separate parts are characterized by differences in bioclimatic and biogeochemical characteristics. The article shows the analysis and geographical coordinates of the main soil types formed in the Jalilabad cadastral region on the basis of a large-scale land map, depending on the soil-ecological conditions. In order to carry out comparative and ecological assessment of soils, we have made land plots in the study area. Currently, the cut samples are in the laboratory stage for physical and chemical analysis in accordance with the methodology. Key words: soil type, mechanical composition, soil structure, soil profile, GPS


1987 ◽  
Vol 121 ◽  
pp. 53-55
Author(s):  
M. Kalafi ◽  
A. Savage ◽  
A.R. Good ◽  
R.D. Cannon ◽  
M.G. Yates

The use of objective prisms in conjunction with the large area coverage afforded by Schmidt telescopes provides a very powerful means of detecting large numbers of emission-line galaxies, and allows one to study their large scale distribution. An important question that has yet to be fully addressed is the relationship between the number-magnitude distributions of the normal field galaxy and emission-line galaxy populations. A comparison such as this would effectively probe the evolution with time of these active objects. For example, study of the distant (z = 0.458) cluster of galaxies associated with 3C 295 (Dressler & Gunn 1983) indicates that emission-line objects may have been far more numerous in the past than at present. As a preliminary investigation in advance of a larger project, we report here on a search for emission-line galaxies in four United Kingdom 1.2m Schmidt Telescope (UKST) objective prism fields.


Sign in / Sign up

Export Citation Format

Share Document