scholarly journals Estimación del uso de agua en el lavado de agregados pétreos. Caso de estudio: diseño de mezcla asfáltica. [Water use estimation in the washing process of unbound granular aggregates. Case of study: hot mix asphalt design]

2019 ◽  
Vol 11 (1) ◽  
pp. 77-86
Author(s):  
Hugo Alexander Rondón Quintana ◽  
María Valentina Rondón Castillo ◽  
Hugo Alfonso Rondón Soto

Durante el lavado de agregados pétreos para la ejecución de ensayos en el laboratorio se consumen grandes cantidades de agua. En el presente estudio se estimó, el volumen de agua que se utiliza cuando se realiza el diseño de una mezcla asfáltica. Adicionalmente se evaluó, el efecto de lavar el agregado en diversas cantidades másicas y con dos niveles de velocidad de salida de agua del grifo. Se realizó un análisis de varianza (ANOVA) para verificar si los resultados obtenidos son significativos o estáticamente iguales. Como conclusión general se reporta, que el consumo de agua disminuye significativamente cuando se lavan mayores cantidades de material al mismo tiempo y se emplea para rociar o humedecer las partículas, menores caudales.Palabras clave:  agua, consumo de agua en el laboratorio, lavado de agregados pétreos, medio ambiente.AbstractLarge quantities of water are consumed during the washing of granular aggregates in laboratory tests. In this study, the volume of water used when is designed a hot mix asphalt - HMA was estimated. Besides, the effect of washing the aggregate in different quantities of mass and with two levels of water speed flow was evaluated. An analysis of variance (ANOVA) was performed to verify if the results obtained are significant or statically equal. As a general conclusion, it is reported that water consumption decreases significantly when larger amounts of material are washed at the same time and used to wash the particles, lower flow rates.Keywords: water, water consumption in the laboratory, washing of unbound granular aggregates, environment.ResumoDurante a lavagem de agregados para a execução de testes no laboratório, grandes quantidades de água são consumidas. No presente estudo, o volume de água utilizado no projeto de uma mistura asfáltica quente foi estimado. Adicionalmente, o efeito da lavagem do agregado em várias quantidades de massa e com dois níveis de velocidade de saída da água da torneira foi avaliado. Uma análise de variância (ANOVA) foi realizada para verificar se os resultados obtidos são significativos ou estaticamente iguais. Como conclusão geral, é relatado que o consumo de água diminui significativamente quando quantidades maiores de material são lavadas ao mesmo tempo e são usadas para umedecer as partículas, taxas de fluxo menores.Palavras-chave: água, consumo de água no laboratório, lavagem de agregados, meio ambiente

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Trey Dronyk-Trosper ◽  
Brandli Stitzel

AbstractAs water rights and water usage become an ever more important part of municipalities’ and states’ way of life, it becomes important to understand what policies can be effective for encouraging conservation of water. One method that has been employed at various times and throughout numerous communities is to limit outdoor watering days. We use a dataset with over 3 million property-month observations during the 2007–2015 period in Norman, Oklahoma, to identify whether the periodic implementation of mandatory water restrictions reduces water usage. Our data allow us to exploit variance in the timing of these water restriction programs. Our findings indicate that this policy reduces water consumption by 0.7 % of total water consumption. Additionally, we use home assessment prices to identify heterogeneity in this response, finding that high priced homes are more responsive to water use restrictions.


Author(s):  
Leila Hashemian ◽  
Vinicius Afonso Velasco Rios ◽  
Alireza Bayat

This study investigated the performance of different materials in a micro-trench composite backfilling design. Laboratory tests were conducted to evaluate the effect of cold temperatures and freeze/thaw cycles on a cement grout and seven preparatory cold asphalt mixes. To compare the performance of cold mix asphalt and epoxy grout with hot mix asphalt as the host material, rutting tests and dynamic modulus tests at different loading frequencies and temperatures were conducted. Finally, laboratory scale micro-trench samples were prepared using different backfilling materials and were loaded using a wheel tracker after freeze/thaw conditioning. The results showed that cement grout could effectively be used to secure the conduit inside the trench. It was also concluded that using high-quality cold mix asphalt, a compatible material with hot mix asphalt, could improve micro-trench durability compared with epoxy grout.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 499
Author(s):  
Salmatta Ibrahim A ◽  
Fayyaz Ali Memon ◽  
David Butler

Ensuring a sustainable urban water supply for developing/low-income countries requires an understanding of the factors affecting water consumption and technical evidence of individual consumption which can be used to design an improved water demand projection. This paper compared dry and rainy season water sources available for consumption and the end-use volume by each person in the different income groups. The study used a questionnaire survey to gather household data for a total of 398 households, which was analysed to develop the relationship between per capita water consumption characteristics: Socio-economic status, demographics, water use behaviour around indoor and outdoor water use activities. In the per capita water consumption patterns of Freetown, a seasonal variation was found: In the rainy season, per capita water consumption was found to be about 7% higher than the consumption for the full sample, whilst in the dry season, per capita water consumption was almost 14% lower than the full survey. The statistical analysis of the data shows that the average per capita water consumption for both households increases with income for informal slum-, low-, middle- and high-income households without piped connection (73, 78, 94 and 112 L/capita/day) and with connection (91, 97, 113 and 133 L/capita/day), respectively. The collected data have been used to develop 20 statistical models using the multiple linear stepwise regression method for selecting the best predictor variable from the data set. It can be seen from the values that the strongest significant relationships of per capita consumption are with the number of occupants (R = −0.728) in the household and time spent to fetch water for use (R = −0.711). Furthermore, the results reveal that the highest fraction of end use is showering (18%), then bathing (16%), followed by toilet use (14%). This is not in agreement with many developing countries where toilet use represents the largest component of indoor end use.


2018 ◽  
Vol 58 (4) ◽  
pp. 695-708 ◽  
Author(s):  
Ya-Yen Sun ◽  
Ching-Mai Hsu

Tourism water consumption reflects the dynamics between the visitation volume, economic structure, and water use technology of a destination. This paper presents a structural decomposition analysis that attributes changes of Taiwan’s tourism water footprint into the demand factors of total consumption and purchasing patterns, and production factors of the industry input structure and water use technology. From 2006 to 2011, Taiwan experienced a 48% growth in visitor expenditures and a 74% surge in its water footprint. Diseconomies of scale were observed, with a 1% increase in consumption leading to a 1.5% increase in the tourism water footprint. A strong preference by visitors for water-intensive goods and services and a changing economic structure requiring more water input for tourism establishments and supply chain members contributed to this worrisome pattern. The water requirements received only a minimal offset effect with technological improvements. Decoupling tourism water consumption from economic output is currently unattainable.


2021 ◽  
Author(s):  
Amali A. Amali ◽  
Muhammad Khalifa ◽  
Lars Ribbe

<p>Water Productivity (WP), a pointer to crop performance vis-à-vis consumptive water use, has fevered debates around agricultural water use, away from scheme-based efficiency to field-scale productive value of water, that can be optimised in localities of increasing absolute and relative scarcity. Research on WP sprung from such debates to become a growth industry, that measures irrigation inefficiencies, poised towards developing economies and “low” value uses of water, to justify its reallocation across sectors, sometimes away from agriculture. While water allocation decisions increasingly prioritise sectoral productivity of freshwater resources, burgeoning food security measures to water scarcity adaptation is shifting management decisions from the purview of scheme managers to individual farming units, underscoring the need to parallel WP initiatives with the resilience of local livelihoods. In this study, we analyse the potential contribution of WP as an agricultural extensification mechanism for a water-scarce irrigated region. The Surface Energy Balance Algorithm for Land (SEBAL), is used to estimate evapotranspiration as a proxy for irrigated water consumption. An automated derivative, the pySEBAL model, is used to compute crop biomass combined with satellite-based evapotranspiration to estimate WP across 1680 heterogeneous groundwater irrigated fields in the eastern Azraq basin of Jordan. WP gap was hereafter estimated as the difference between the current field WP, to a selected productivity range, attainable within infrastructural and agroclimatic limits. By investigating the possibility of closing WP gaps, we show that a careful selection of WP thresholds to benchmark localised irrigated water consumption offers the potential to reduce seasonal irrigation water use within a range of 18 to 29% of the current consumption, without adversely affecting crop yield and related livelihoods. Such range (5 – 9 MCM[†]) for a water-scarce Azraq basin, offers substantial relief to groundwater resources, related ecosystems, and long-term catchment sustainability. We additionally demonstrate that this provides a window for agricultural extensification by leveraging farm management practices across irrigated fields. We finally propose entrepreneurial and capacity building opportunities from analysing dynamics in farmers' individual water use behaviour. WP, as a useful indicator for water reallocation under water-scarce conditions, would need to consider equitable utilisation of water resources and the resilience of local livelihoods.</p><div><br><div> <p>[†] Million Cubic Meters</p> </div> </div>


Water Policy ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 1227-1239
Author(s):  
Beatriz Reutter ◽  
Paul A. Lant ◽  
Joe L. Lane

Abstract We present the first analysis of water use in the Australian economy to account for inter-state trade, exports and consumption patterns, across all economic sectors and incorporating a temporal analysis. This is achieved by using the environmentally extended input-output technique, combining state-level input-output and water accounts from the Australian Bureau of Statistics. Results show that the three big eastern economies (New South Wales, Victoria, Queensland) rely mostly on water used within their jurisdictions. Approximately one-third of water consumption is for exported commodities, with the biggest export flows of virtual water being associated with agricultural production. Comparing results across the years (2000–2011), the water consumption associated with the provision of goods and services has decreased by 32% for exports, and by 38% for domestic markets. To date in Australia, the focus for improved trans-boundary water management (within Australia) has been on improved mechanisms for sharing physical allocation of water; these results provide the trans-boundary economic dependencies related to water availability. Recent innovations in the compilation of economic input-output models create an opportunity to progress this analysis, exploring in detail the economy–water interlinkages. It is our intention that the paper shows the value of analysing water flows using the multi-regional input-output techniques.


2016 ◽  
Vol 56 (7) ◽  
pp. 1070 ◽  
Author(s):  
S. G. Wiedemann ◽  
M.-J. Yan ◽  
C. M. Murphy

This study conducted a life cycle assessment (LCA) investigating energy, land occupation, greenhouse gas (GHG) emissions, fresh water consumption and stress-weighted water use from production of export lamb in the major production regions of New South Wales, Victoria and South Australia. The study used data from regional datasets and case study farms, and applied new methods for assessing water use using detailed farm water balances and water stress weighting. Land occupation was assessed with reference to the proportion of arable and non-arable land and allocation of liveweight (LW) and greasy wool was handled using a protein mass method. Fossil fuel energy demand ranged from 2.5 to 7.0 MJ/kg LW, fresh water consumption from 58.1 to 238.9 L/kg LW, stress-weighted water use from 2.9 to 137.8 L H2O-e/kg LW and crop land occupation from 0.2 to 2.0 m2/kg LW. Fossil fuel energy demand was dominated by on-farm energy demand, and differed between regions and datasets in response to production intensity and the use of purchased inputs such as fertiliser. Regional fresh water consumption was dominated by irrigation water use and losses from farm water supply, with smaller contributions from livestock drinking water. GHG emissions ranged from 6.1 to 7.3 kg CO2-e/kg LW and additional removals or emissions from land use (due to cultivation and fertilisation) and direct land-use change (due to deforestation over previous 20 years) were found to be modest, contributing between –1.6 and 0.3 kg CO2-e/kg LW for different scenarios assessing soil carbon flux. Excluding land use and direct land-use change, enteric CH4 contributed 83–89% of emissions, suggesting that emissions intensity can be reduced by focussing on flock production efficiency. Resource use and emissions were similar for export lamb production in the major production states of Australia, and GHG emissions were similar to other major global lamb producers. The results show impacts from lamb production on competitive resources to be low, as lamb production systems predominantly utilised non-arable land unsuited to alternative food production systems that rely on crop production, and water from regions with low water stress.


Author(s):  

Special features of water use within the boundaries of the Ishim River transboundary basin (an area with very scanty water resources) have been analyzed. In spite of the general trend of water consumption volume reduction the water quality deterioration has been found in the basin. The degree of anthropogenic impact upon water resources have been assessed on the basis of direct and indirect indicators.


Sign in / Sign up

Export Citation Format

Share Document