scholarly journals EVALUATION OF MORPHOLOGICAL AND BIOCHEMICAL RESISTANCE PARAMETERS TO CHLORIDE SALINATION IN DIFFERENT WHEAT GENOTYPES

2019 ◽  
Vol 14 (1) ◽  
pp. 18-39 ◽  
Author(s):  
Neonila V Kononenko ◽  
Tat’yana A Dilovarova ◽  
Roman V Kanavsky ◽  
Svyatoslav V Lebedev ◽  
Ekaterina N Baranova ◽  
...  

Determining salt tolerance potential in wheat is one of the most important problems in breeding practice for areas with primary and secondary salinity. Presence of large areas of saline soils results in inhibition of growth, development and stability in obtaining high yields of agricultural plants. Therefore, there is a need for a comprehensive studying and improving of diagnostic methods during early growth stages. Different genotypes of wheat Triticum aestivum Host. and Triticum durum Desf. were used to identify salt tolerance markers. Both morphometric and some biochemical indicators of wheat varieties were used as salt tolerance markers. At this stage, it was shown that a comprehensive description of wheat varieties is needed to assess resistance of wheat varieties to chloride salinity.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Pao Theen See ◽  
Caroline S. Moffat

After nearly 40 years of DNA molecular marker development in plant breeding, the wheat research community has amassed an extensive collection of molecular markers which have been widely and successfully used for selection of agronomic, physiological and disease resistance traits in wheat breeding programs. Tan spot is a major fungal disease of wheat and a significant global economic challenge and is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr). Here, the potential for using a PCR-based marker (Ta1AS3422) present on the short arm of wheat chromosome 1A, was evaluated for effectiveness in distinguishing tan spot disease susceptibility. The marker was initially screened against 40 commercial Australian hexaploid wheat varieties, and those that amplified the marker had an overall lower disease score (2.8 ± 0.7 for seedlings and 2.4 ± 0.4 for plants at the tillering stage), compared to those lacking the marker which exhibited a higher disease score (3.6 ± 0.8 for both growth stages). The potential of Ta1AS3422 as a marker for the tan spot disease response was further assessed against a panel of 100 commercial Australian hexaploid wheat varieties. A significant association was observed between marker absence/presence and tan spot disease rating (Pearson’s chi-squared test, χ2 (6) = 20.53, p = 0.002), with absence of Ta1AS3422 associated with susceptibility. This simple and cost-effective PCR-based marker may be useful for varietal improvement against tan spot, although further work is required to validate its effectiveness.


Author(s):  
A. Golodna ◽  
◽  
L. Holyk ◽  
◽  

Winter soft wheat is one of the most important crops. New varieties of wheat should be characterized by a set of valuable economic characteristics, but the most relevant is the creation of varieties with high yields and grain quality, resistant to a complex of diseases and other negative factors. The aim of the study was to evaluate new promising varieties of winter soft wheat breeding of the NSC "Institute of Agriculture NAAS" for grain yield, winter hardiness, disease resistance and grain quality. Experimental studies were conducted at the NSC "Institute of Agriculture NAAS" in 2016-2020, research fields are located in the Fastiv district of Kyiv region. Different weather conditions over the years of research have contributed to a better and more comprehensive assessment of varieties on a set of valuable economic characteristics. During field experiments, the generally accepted technology of growing winter wheat was used. The area of the competitive variety testing site was 20.0 m2, repeated four times. Field, measuring and weighing, laboratory and mathematical and statistical methods were used during the research. In 2018, new varieties of soft winter wheat Krasunia Poliska, Mokosha, Pyriatynka, Fortetsia Poliska, Efektna and in 2020 the variety Zemlerob were transferred to the Ukrainian Institute of Plant Variety Examination for qualification examination. Varieties created in NSC "Institute of Agriculture NAAS" by the method of hybridization using as parent components varieties and lines of local and foreign breeding. The variety Krasunia Poliska, belongs to the Lutescens type, is characterized by high drought resistance, resistance to lodging, germination on stumps, grain shedding. The Mokosha variety, belongs to the Lutescens type, has high drought resistance, is resistant to lodging, germination on stumps and grain shedding. Variety Pyriatynka, belongs to the Lutescens type, has high drought resistance, resistance to lodging, germination on the stump, shedding. Fortetsia Poliska, belongs to the Alborbrum type, is characterized by high drought resistance, resistance to lodging, germination on the stump and shedding of grain. Variety Efektna, belongs to the Erythrospermum type, is short (plant height 64-80 cm), characterized by high drought resistance, resistance to lodging, germination on the stump, shedding. The variety of winter soft wheat Zemlerob, belongs to the Lutescens type, has high drought resistance, resistant to lodging, germination on the stump, shedding of grain. The highest grain yield on average over the years of testing was obtained in the variety Fortetsia Poliska - 7.31 t / ha, varieties Pyriyatynka and Zemlerob with indicators of 7.10 and 7.06 t / ha, respectively, were distinguished by high yields. The yields of Mokosha, Effektna and Krasunia Poliska ranged from 6.27 to 6.95 t / ha. According to the increased winter hardiness, the best varieties are Pyriatynka, Krasunia Poliska, Mokosha and Efektna with a score of 8.0-8.2 points. In the varieties Fortetsia Poliska and Zemlerob the score for winter hardiness was 7.8-7.9 points. Estimation of powdery mildew showed that the maximum percentage of lesions on average over the years of research was found in the variety Mokosha (25.5%). As the most stable selected varieties Efektna, Lisova pisnia, Pyriatynka and Fortetsia Poliska (1.7-11.6%). In terms of resistance to brown rust, all varieties showed high resistance, the damage did not exceed 8.0%. The most stable variety was Efektna (0.3%). The greatest damage to winter wheat varieties was found in leaf septoria, which ranged from 19.0 to 39.3%. The greatest resistance to this disease is determined in the cultivar Zemlerob. New wheat varieties should also be characterized by high levels of protein, gluten and other valuable traits that ensure grain quality. The highest protein content was determined in the grains of the varieties Efektna (11.67%), Mokosha (11.62%) and Krasuni Poliska (11.54%). According to the increased content of gluten, the varieties Krasunia Poliska, Lisova pisnia, Mokosha (19.22-19.66%) were distinguished. According to the highest indicators of sedimentation, the varieties Krasunia Poliska, Pyriatynka and Mokosha (34.50-34.84 %) should be noted, these varieties are also the best in terms of a comprehensive assessment of grain quality. New varieties of soft winter wheat Krasunia Poliska, Mokosha, Pyryatynka, Fortetsia Poliska, Efektna and Zemlerob breedibg of NSC "Institute of Agriculture NAAS" are characterized by high grain yield (up to 7.31 t / ha), increased winter hardiness and disease resistance, as well as good indicators of grain quality: protein content - up to 11.67%; gluten - up to 19.66%. The introduction of these varieties into production will allow to obtain high yields of quality grain.


Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 115 ◽  
Author(s):  
Manuel de Souza ◽  
Carlos Mendes ◽  
Kennia Doncato ◽  
Eliana Badiale-Furlong ◽  
César Costa

Small succulent halophytic shrubs of the genera Salicornia and Sarcocornia (Salicornioideae, Amaranthaceae) are commonly named sea asparagus and consumed worldwide as green salad in gourmet food, as conserves, and beverages. Their shoots are rich in bioactive compounds and plants show high yields in a wide range of salinities, but little is known about how salt cultivation conditions affect their chemical composition. Two genotypes (BTH1 and BTH2) of the Brazilian sea asparagus Salicornia neei Lag. were evaluated for salt tolerance and changes in shoot concentrations of organic metabolites and antioxidant activity under different salt exposure in both greenhouse and field conditions. All greenhouse plants received full strength modified Hoagland solution in deionized water with a basic electrical conductivity (EC) of 1.7 dS m−1, and with NaCl concentrations (in mM) of ~0.1 (control), 34, 86, 171, 513, and 769. After fifty days of cultivation, both S. neei genotypes showed high salt tolerance and grew better under low salinities (34–86 mM NaCl) than under control salinity. Shoots of BTH1 genotype appeared to be undergoing lignification and used their high carotenoid content to dissipate the oxidative power, and the zeaxanthin content and de-epoxidation state of xanthophylls (DES) were positively affected by salinity. Under increasing salinity, BTH2 genotype had higher relative content of chlorophyll b, which may have lowered the plant photo-oxidation rate, and increased shoot concentration of the flavonoid quercetin (up to 11.6 μg g−1 dw at 769 mM NaCl), leading to higher antioxidant capacity. In the field experiment, after 154 days of irrigation with saline (213 mM NaCl) shrimp farm effluent, BTH2 plants grew taller, produced more metabolites (e.g., total phenolics, total free flavonoids, quercetin, and protocatechuic acid) and had a greater antioxidant capacity of shoots than that of BTH1 plants and that of traditional crops irrigated with fresh water. Yield and bioactive compound composition of S. neei genotypes’ shoots can be enhanced by cultivation under moderate saline conditions.


2021 ◽  
pp. 312-319
Author(s):  
Abdulwahid Saif ◽  
Aref Al-Shamiri ◽  
Abdulnour Shaher

Abstract M3 derived mutants from two bread wheat varieties, namely, 'Giza 186' and 'Saha 93', were screened for resistance to the rust Ug99 at two locations in Njoro (Kenya) and in Tihama (Yemen). At Tihama, two mutants of 'Giza 186' (G-M2-2010-1-28 and G-M2-2010-41-52) and four mutants of 'Saha 93' (S-M2-2010-16-12, S-M2-2010-21-13, S-M2-2010-22-14 and S-M2-2010-27-15) were seen to be resistant at both seedling and adult stages while their parents were resistant at seedling stage and susceptible at adult stage. In Kenya, the resistance score of the mutants was slightly different from those obtained at Tihama. The mutants G-M2-2010-1-28 and G-M2-2010-41-52 were stable in their level of resistance recorded at Tihama, but only two mutants of 'Saha 93' (S-M2-2010-16-12 and S-M2-2010-27-15) were resistant at both growth stages. S-M2-2010-22-14 and S-M2-2010-21-13 were resistant at the seedling stage while susceptible at adult stage. Further selection on these mutants for yield potential, agronomic performance and yellow rust disease resistance, as well as on selected mutants of both 'Giza 186' and 'Saha 93', at M5-M6 stages identified superior mutant lines compared with the two parents 'Saha 93' and 'Giza 186'. These included the line Erra-010-GM2w-41-52-40, which ranked first in yield (3768 kg/ha), followed by the lines Erra-010-SwM2-16-12-19, Erra-010-GM2w-1-28-18 and Erra-010-SwM2-22-14-6. Moreover, it can be concluded that Erra-010-GM2w-41-52-40 and Erra-010-SwM2-16-12-19 are highly recommended for their resistance to stem and yellow rust diseases as well as for yield potential and preference by farmers. Therefore, efforts are in progress to increase their seeds for dissemination over a wide range of farmers and wheat areas where rust diseases are an epidemic, and for registration of the lines as improved mutant varieties.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 354
Author(s):  
Sebastian Munz ◽  
David Reiser

Intercropping systems of cereals and legumes have the potential to produce high yields in a more sustainable way compared to sole cropping systems. Their agronomic optimization remains a challenging task given the numerous management options and the complexity of interactions between the crops. Efficient methods for analyzing the influence of different management options are needed. The canopy cover of each crop in the intercropping system is a good determinant for light competition, thus influencing crop growth and weed suppression. Therefore, this study evaluated the feasibility to estimate canopy cover within an intercropping system of pea and oat based on semantic segmentation using a convolutional neural network. The network was trained with images from three datasets during early growth stages comprising canopy covers between 4% and 52%. Only images of sole crops were used for training and then applied to images of the intercropping system. The results showed that the networks trained on a single growth stage performed best for their corresponding dataset. Combining the data from all three growth stages increased the robustness of the overall detection, but decreased the accuracy of some of the single dataset result. The accuracy of the estimated canopy cover of intercropped species was similar to sole crops and satisfying to analyze light competition. Further research is needed to address different growth stages of plants to decrease the effort for retraining the networks.


1983 ◽  
Author(s):  
RW Fitzsimmons ◽  
RH Martin ◽  
CW Wrigley

This handbook provides a practical description of wheat grain, heads and plants at several growth stages. It is designed to assist in distinguishing varieties currently grown throughout Australia, in the regions where each is usually grown. It is directed at a broad audience, including those involved with the grain trade at all stages, from seed production, through growing and harvesting, to receival and segregation, sales and utilization. Although Australia-wide in its overall approach, it is hoped that the handbook will form a basis to meet specialised local needs. Thus smaller sets of sheets, relating to local groups of varieties, might be selected and additional comments added, in the space provided, relating to the particular locality and season. In such a case, the characters that show the greatest differences between the particular varieties should be selected for identification.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 15-19
Author(s):  
Z. Gálová ◽  
MichalíkI ◽  
H. Knoblochová ◽  
E. Gregová

Method ISTA SDS-PAGE was used for separation, detection and evaluation of high molecular weight glutenin subunits (HMW) in the different wheat species. The relation has been studied between the HMW glutenin subunit alleles and the bread-making quality of 25 world wheat cultivars and 21 regional varieties common wheat varieties (Triticum aestivum L.), 17 winter spelt wheat (Triticum spelta L.), 3 durum wheat cultivars (Triticum durum DESF.), 9 cultivars of Triticum turgidum L. and 5 cultivars of Triticum polonicum L. The highest frequency of occurrence of HMW glutenin subunits 2*, 13 + 16 and 5 + 10 were found in world wheat cultivars. In Slovak wheat varieties were analysed subunits 0, 7 + 9 and 5 + 10, 2 + 12. The HMW subunits 0, 7 + 8 with Glu-score 4 were determined in Triticum durum DESF. Three electrophoretical profile groups of different HMW glutenin subunits were found in Triticum turgidum L. and Triticum polonicum L. and six electrophoretical profile groups were determined in Triticum spelta L. The verified correlations between bread-making quality and specific HMW subunits of glutenin can be utilised by wheat breeders using SDS-PAGE of proteins as a screening test for the prediction of bread-making quality of wheat.


1994 ◽  
Vol 34 (7) ◽  
pp. 949 ◽  
Author(s):  
KA Gravois ◽  
RS Helms

Establishing a uniform rice (Oryza sativa L.) stand is an important beginning to managing a rice crop and attaining high yields. Most rice management practices in the United States are timed according to rice growth stages. Non-uniform rice stands, and subsequently non-uniform growth stages, present problems for the timely application of management practices for attaining high yields. Our objective was the determination of the effects of uneven emergence on rice yield, milling yield, and yield components. Experiments were conducted in 1988 and 1989 on a Hebert silt loam (Vertic Hapludoll) at the Southeast Branch Experiment Station near Rohwer, Arkansas. Uneven emergence was simulated by delayed (18 days from emergence) interseeding of rice to achieve 0, 20, 40, 60, and 80% uneven emergence. Each experiment was planted with the cultivars Lemont (semi-dwarf) and Tebonnet (tall) and was replicated 4 times. Rice yields for the uneven emergence treatment levels were significantly less than the rice yields seeded exclusively at PD1 (planting date 1), except for the uneven emergence levels 80-20 (80% planted at PD1 and 20% planted at PD2) and 60-40 for Tebonnet, and 60-40 in 1988 for Lemont. In 1989, there was a trend for head rice yields to decrease as uneven emergence levels increased. Average panicle density and number of grains per panicle for both Lemont and Tebonnet decreased with increasing uneven emergence, indicating a failure in the typical compensatory relationship between panicle density and grain per panicle. Lemont exhibited reduced average grain weights due to uneven emergence, especially at 80-20, 60-40, and 40-60 uneven emergence levels. Harvest indices were higher for PD1 than for PD2, except at 20-80 uneven emergence level. Essentially, the later emerging rice from the second planting acted much like a weed by competing against rather than contributing to rice yields. Late interseeding to enhance poor rice stands is unlikely to produce an economic return that could be expected from an adequate initial plant stand.


Sign in / Sign up

Export Citation Format

Share Document