scholarly journals Potensi Kapang Endofit Belimbing Wuluh sebagai Kandidat Penghasil Senyawa Antidiabetes

2020 ◽  
Vol 9 (1) ◽  
pp. 35-46
Author(s):  
Wahyu Hidayati ◽  
Maharadingga Maharadingga ◽  
Rezza Syahputra

AbstrakMikroba endofit, khususnya kapang endofit, telah banyak dilaporkan memiliki kemampuan untuk menghasilkan senyawa-senyawa yang dapat digunakan dalam bidang pengobatan. Salah satu tanaman obat yang dapat dieksplorasi mikroorganisme endofitnya adalah belimbing wuluh (Averrhoa bilimbi Linn.). Penelitian ini dilakukan sebagai penelitian awal untuk mengetahui potensi kapang endofit dari buah belimbing wuluh sebagai penghasil senyawa antidiabetes yang dilakukan dengan mengetahui aktivitas inhibisi terhadap enzim alfa-amilase. Untuk mencapai tujuan tersebut, beberapa tahap dilakukan dalam penelitian ini yang diawali dengan isolasi kapang endofit yang dilakukan dengan menghancurkan buah belimbing wuluh dan menyebarkannya pada medium Potato Dextrose Agar (PDA), dilanjutkan dengan fermentasi pada medium Potato Dextrose Yeast (PDY) dan ekstraksi dengan menggunakan pelarut etil asetat. Tahap akhir dari penelitian ini adalah uji aktivitas antidiabetes melalui uji inhibisi alfa amilase dengan menggunakan substrat lugol dan enzim alfa-amilase yang berasal dari Bacillus sp. Aktivitas penghambatan diketahui dengan melakukan pengukuran pada microplate reader pada panjang gelombang 595 nm. Pada penelitian ini diperoleh hasil bahwa 12 isolat kapang endofit dengan karakteristik morfologi yang berbeda-beda antar isolat memiliki potensi untuk menghasilkan senyawa antidiabetes yang terlihat dari adanya kemampuan menghambat aktivitas enzim alfa amilase dan isolat BW-10 memiliki aktivitas inhibisi paling tinggi diantara isolat lainnya, yaitu sebesar 45,564%. Hasil identifikasi molekuler menunjukkan isolat BW-10 memiliki kemiripan sekuens sebesar 99% dengan isolat Trametes elegans. Penelitian ini dapat dilanjutkan dengan uji aktivitas antidiabetes terhadap enzim lainnya dan identifikasi senyawa metabolit sekunder yang dihasilkan oleh kapang tersebut.Kata kunci: Alfa amilase, Antidiabetes, Belimbing wuluh (Averrhoa bilimbi), Kapang endofitAbstractEndophytic microbes have been reported to havean important in the production of secondary metabolites by the host plants. Moreover, some researches reported that these microbes, specifically endophytic fungi, are also able to produce metabolites to cure diseases, such as metabolic syndrme diseases. This study was conducted as a preliminary research to explore the potency of endophytic fungi isolated from fruits of Averrhoa bilimbi Linn. As an alternative resource for antidiabetes compounds production. Here, we screened the antidiabetes activity by analyzing the alfa amylase inhibition activity. Several steps were performed in this research, which started by isolating endophytic fungi from sterilized fresh fruits, fermentation and extraction, and anti-diabetes activity analysis through alpha-amylase inhibition assay as the final step. In this study, we obtained 12 endophytic fungi isolates with different morphological characteristics between isolates have the potential to produce antidiabetic compounds that are seen from the ability to inhibit the activity of the alpha amylase enzyme. The most potential isolate was BW-10 isolate which had the highest inhibitory activity among other isolates, which is 45.564%. Molecular identification results showed isolate BW-10 has a similarity sequence of 99% with Trametes elegans isolate. Antidiabetics activity through various in vitro and in vivo evaluation and secondary metabolites identification are possible to be conducted as further research.Keywords: Alpha-amylase, Antidiabetics, Averrhoa bilimbi, Endophytic fungi

2018 ◽  
Vol 32 (10) ◽  
pp. 1406-1420 ◽  
Author(s):  
Mirana Taz ◽  
Sang Ho Bae ◽  
Hae Il Jung ◽  
Hyun-Deuk Cho ◽  
Byong-Taek Lee

A variety of synthetic materials are currently in use as bone substitutes, among them a new calcium phosphate-based multichannel, cylindrical, granular bone substitute that is showing satisfactory biocompatibility and osteoconductivity in clinical applications. These cylindrical granules differ in their mechanical and morphological characteristics such as size, diameter, surface area, pore size, and porosity. The aim of this study is to investigate whether the sizes of these synthetic granules and the resultant inter-granular spaces formed by their filling critical-sized bone defects affect new bone formation characteristics and to determine the best formulations from these individual types by combining the granules in different proportions to optimize the bone tissue regeneration. We evaluated two types of multichanneled cylindrical granules, 1 mm and 3 mm in diameter, combined the granules in two different proportions (wt%), and compared their different mechanical, morphological, and in vitro and in vivo biocompatibility characteristics. We assessed in vitro biocompatibility and cytotoxicity using MC3T3-E1 osteoblast-like cells using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal imaging. In vivo investigation in a rabbit model indicated that all four samples formed significantly better bone than the control after four weeks and eight weeks of implantation. Micro-computed tomography analysis showed more bone formation by the 1 mm cylindrical granules with 160 ± 10 µm channeled pore and 50% porosity than the other three samples ( p<.05), which we confirmed by histological analysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hariprasad Puttaswamy ◽  
Hittanahallikoppal Gajendramurthy Gowtham ◽  
Monu Dinesh Ojha ◽  
Ajay Yadav ◽  
Gourav Choudhir ◽  
...  

AbstractPlants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) for their possible anti-SARS-CoV-2 properties targeting four proteins/ enzymes which govern viral pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. Among the top-ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids which interacted strongly with viral spike protein—receptor binding domain, > 32% molecules which showed better interaction with the active site of human transmembrane serine protease were belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly interacted with active site of viral RNA-dependent RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling most of the drug-likeness characters as per Lipinski's rule (Coagulin K, Kamalachalcone C, Ginkgetin, Isoginkgetin, 3,3′-Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio-transformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Present study provides a platform for researchers to explore the possible use of selected PSM to prevent/ cure the COVID-19 by subjecting them for thorough in vitro and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, entry and replication.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Rosalba Leuci ◽  
Leonardo Brunetti ◽  
Viviana Poliseno ◽  
Antonio Laghezza ◽  
Fulvio Loiodice ◽  
...  

Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.


2021 ◽  
Vol 16 (12) ◽  
pp. 18-23
Author(s):  
Shweta Dhanda ◽  
Praveen Kumar ◽  
Manjusha Choudhary ◽  
Suman Dhanda

Probiotics are live microbes which positively influence the health when consumed in adequate amount. Lactic acid bacteria (LAB) are commonly used probiotics and are generally found in yogurt and fermented foods. They provide barrier for pathogens by secreting peptides and other metabolites. Pediococcus acidilactici NCDC 252 is a LAB of dairy origin with probiotic attributes. NCDC 252 was studied for in vitro anti-inflammatory, antioxidant and antihyperglycemic activities. Anti-inflammatory activity was studied by human red blood cell (HRBC) membrane stabilization method, protein (albumin) denaturation inhibitory activity and heat induced haemolysis. Antioxidant activity was evaluated by α, α-diphenyl-β- picrylhydrazyl (DPPH) radical and hydrogen peroxide (H2O2) scavenging assays. Alpha amylase inhibition assay was performed to examine antihyperglycemic effect. NCDC 252 exhibited potent anti-inflammatory but moderate antioxidant and antihyperglycemic activities as compared to control. NCDC 252 exhibited 65%, 70% and 49% membrane stabilization, protein denaturation and heat induced activity respectively. Scavenging effect was 45 % and 60% in H2O2 and DPPH assays respectively. Alpha amylase inhibition was 48 %. These results suggest therapeutic potential of NCDC 252 and open new avenues to treat disorders related to free radical generation such as inflammation and diabetes mellitus after in vivo evaluation of NCDC 252 to confirm its efficacy in animals.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Sign in / Sign up

Export Citation Format

Share Document