scholarly journals REDUCING OVERHEAD OF SELF-STABILIZING BYZANTINE AGREEMENT PROTOCOLS FOR BLOCKCHAIN USING HTTP/3 PROTOCOL: A PERSPECTIVE VIEW

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 381
Author(s):  
Nur Arifin Akbar ◽  
Andi Sunyoto ◽  
M. Rudyanto Arief ◽  
Wahyu Caesarendra

Today, there is a tendency to reduce the dependence on local computation in favor of cloud computing. However, this inadvertently increases the reliance upon distributed fault-tolerant systems. In a condition that forced to work together, these systems often need to reach an agreement on some state or task, and possibly even in the presence of some misbehaving Byzantine nodes. Although non-trivial, Byzantine Agreement (BA) protocols now exist that are resilient to these types of faults. However, there is still a risk for inconsistencies in the application state in practice, even if a BA protocol is used. A single transient fault may put a node into an illegal state, creating a need for new self-stabilizing BA protocols to recover from illegal states. As self-stabilization often comes with a cost, primarily in the form of communication overhead, a potential lowering of latency - the cost of each message - could significantly impact how fast the protocol behaves overall. Thereby, there is a need for new network protocols such as QUIC, which, among other things, aims to reduce latency. In this paper, we survey current state-of-the-art agreement protocols. Based on previous work, some researchers try to implement pseudocode like QUIC protocol for Ethereum blockchain to have a secure network, resulting in slightly slower performance than the IP-based blockchain. We focus on consensus in the context of blockchain as it has prompted the development and usage of new open-source BA solutions that are related to proof of stake. We also discuss extensions to some of these protocols, specifically the possibility of achieving self-stabilization and the potential integration of the QUIC protocol, such as PoS and PBFT. Finally, further challenges faced in the field and how they might be overcome are discussed.

TAPPI Journal ◽  
2014 ◽  
Vol 13 (11) ◽  
pp. 37-43 ◽  
Author(s):  
LIISA KOTANEN ◽  
MIKA KÖRKKÖ ◽  
ARI ÄMMÄLÄ ◽  
JOUKO NIINIMÄKI

The use of recovered paper as a raw material for paper production is by far the most economical and ecological strategy for the disposal of waste paper. However, paper production from recovered paper furnish generates a great amount of residues, and the higher the demand requirements for the end product, the higher the amount of rejected material. The reason for this is that the selectivity of the deinking process is limited; therefore, some valuable components are also lost in reject streams. The rejection of usable components affects the economics of recycled paper production. As the cost of waste disposal continues to increase, this issue is becoming more and more severe. This paper summarizes the current state of the resource efficiency in recycled pulp production and provides information on the volumes of rejected streams and the usable material within them. Various means to use these reject streams are also discussed, including the main findings of a recent thesis by the main author. This review summarizes current internal and external use of reject streams generated in the deinking operations.


2021 ◽  
Vol 22 (11) ◽  
pp. 5899
Author(s):  
Ewa Wrona ◽  
Maciej Borowiec ◽  
Piotr Potemski

CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor–patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1105
Author(s):  
Antonio D. Martinez-Perez ◽  
Francisco Aznar ◽  
Guillermo Royo ◽  
Santiago Celma

In the current state of the art, WiFi-alike standards require achieving a high Image Rejection Ratio (IRR) while having low power consumption. Thus, quadrature structures based on passive ring mixers offer an attractive and widely used solution, as they can achieve a high IRR while being a passive block. However, it is not easy for the designer to know when a simple quadrature scheme is enough and when they should aim for a double quadrature structure approach, as the latter can improve the performance at the cost of requiring more area and complexity. This study focuses on the IRR, which crucially depends on the symmetry between the I and Q branches. Non-idealities (component mismatches, parasitics, etc.) will degrade the ideal balance by affecting the mixer and/or following/previous stages. This paper analyses the effect of imbalances, providing the constraints for obtaining a 40 dB IRR in the case of a conversion from a one-hundred-megahertz signal to the five-gigahertz range (upconversion) and vice versa (downconversion) for simple and double quadrature schemes. All simulations were carried out with complete device models from 65 nm standard CMOS technology and also a post-layout Monte Carlo analysis was included for mismatch analysis. The final section includes guidelines to help designers choose the most adequate scheme for each case.


2018 ◽  
Vol 27 (07) ◽  
pp. 1860013 ◽  
Author(s):  
Swair Shah ◽  
Baokun He ◽  
Crystal Maung ◽  
Haim Schweitzer

Principal Component Analysis (PCA) is a classical dimensionality reduction technique that computes a low rank representation of the data. Recent studies have shown how to compute this low rank representation from most of the data, excluding a small amount of outlier data. We show how to convert this problem into graph search, and describe an algorithm that solves this problem optimally by applying a variant of the A* algorithm to search for the outliers. The results obtained by our algorithm are optimal in terms of accuracy, and are shown to be more accurate than results obtained by the current state-of-the- art algorithms which are shown not to be optimal. This comes at the cost of running time, which is typically slower than the current state of the art. We also describe a related variant of the A* algorithm that runs much faster than the optimal variant and produces a solution that is guaranteed to be near the optimal. This variant is shown experimentally to be more accurate than the current state-of-the-art and has a comparable running time.


Author(s):  
V. Sautkina

The following article is devoted to the study of current state of national education and healthcare systems. The cost of services in these areas constantly increases, there for even developed countries are forced to make significant efforts in order to maintain earlier achieved results. Due to this reason countries entered into the period of constant reforms with the purpose of maintaining that high level of health and educational services for all segments of population with a constant reduction of its volume of financing. The legal aspects of these changes are requiring manifestation of the will of politicians in order to overcome the opposition of parties which are defending their interests. As an example, the main opponents of the healthcare reforms proposed by Barak Obama in the USA are Republicans who are concerned about a significant increase of a state control over the entire national insurance system. The author comes to the conclusion that only joint actions of the government and every segment of population might actually improve the quality of medical and educational services.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3079 ◽  
Author(s):  
Leopoldo Angrisani ◽  
Francesco Bonavolontà ◽  
Annalisa Liccardo ◽  
Rosario Schiano Lo Moriello

In this paper, a logic selectivity system based on Long Range (LoRa) technology for the protection of medium-voltage (MV) networks is proposed. The development of relays that communicate with each other using LoRa allows for the combination of the cost-effectiveness and ease of installation of wireless networks with long-range coverage and reliability. The realized demonstrator to assess the proposed system is also presented in the paper; based on different types of faults and different locations, the times needed for clearing a fault and restoring the network were estimated from repeated experiments. The obtained results confirm that, with an optimized design of transmitted packets and of protocol characteristics, LoRa communication grants fault management that meets the criteria of logic selectivity, with fault isolation occurring within the maximum allowed time.


2020 ◽  
Vol 11 (7-2020) ◽  
pp. 19-32
Author(s):  
Olga E. Konovalova ◽  
◽  
Nikolai M. Kuznetsov ◽  

The article tells the story of the creation of the Nizhne-Tulomskaya hydroelectric power station (HPP). The main energy parameters of the hydroelectric power station, the layoutof the main structures of the station, and archival photos of the construction time are given. Data on the production and consumption of electricity for own needs, the cost of 1 kW·h during the great Patriotic war are shown. It is told about the reconstruction and current state of the station.


Author(s):  
Abderrahmen Guermazi ◽  
Abdelfettah Belghith ◽  
Mohamed Abid

This article deals with a key distribution protocol to secure routing in large-scale Wireless Sensor Networks (WSNs) and proposes a new protocol called KDSR. The authors' protocol has two originalities: to provide a secure network structure for large-scale WSNs, and to use lightweight local process to share efficiently the Local Broadcast Keys, the Pairwise Keys and the Global Broadcast Key. These keys are useful to secure several communication patterns in WSNs: one-to-many, one-to-one and one-to-all. Security analyses show that KDSR can withstand several attacks against WSNs. Through fast node revocation process, KDSR offers a good resilience against node capture. Immunity against MiM and replay attacks are well checked with the AVISPA tools. The experimentations are done on real TelosB motes and through the TOSSIM simulator. Simulation results confirm that KDSR is scalable, provides a good key connectivity and a good resilience. Comparison to earlier work shows that KDSR causes less computation complexity, less communication overhead and much less storage space even for large-scale WSNs.


Sign in / Sign up

Export Citation Format

Share Document