scholarly journals A novel mast cell-dependent allergic peritonitis model

Author(s):  
Hadas Pahima ◽  
Pier Giorgio Puzzovio ◽  
Francesca Levi-Schaffer

Background: Typical murine models of allergic inflammation are induced by the combination of ovalbumin and aluminum hydroxide. However, accumulating evidence indicates that, in models of asthma and atopic dermatitis, allergic inflammation can be generated in the absence of aluminum hydroxide. Moreover, co-administration of S. aureus enterotoxin B with ovalbumin can enhance inflammation. Objective: The objective of this study was to establish a rapid and mast cell-dependent murine model of allergic inflammation by inducing allergic peritonitis using ovalbumin and S. aureus enterotoxin B. Methods: Allergic peritonitis was induced in C57BL/6 mice by subcutaneous sensitization and intraperitoneal challenge with ovalbumin and S. aureus enterotoxin B. Disease characteristics were assessed by flow cytometry, ELISA, Trypan Blue exclusion and colorimetric assays. Results: Time course of the allergic peritonitis revealed a peak of peritoneal inflammation 48h after challenge, as assessed by total cells and eosinophil counts. Decrease of cell numbers started 96h post challenge with complete clearance within 168h. Moreover, significantly higher levels of tryptase and increased vascular permeability were found 30 min following challenge. Allergic inflammation induction by ovalbumin and S. aureus enterotoxin B was impaired in mast cells deficient mice and partially restored by mice reconstitution with bone marrow derived mast cells, indicating the mast cell role in this model. Conclusion: We present a novel model of allergic peritonitis that is mast cell-dependent, simple and robust. Moreover, the use of S. aureus enterotoxin B better resembles human allergic inflammation, which is known to be characterized by the colonization of Staphylococcus aureus.

2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


2003 ◽  
Vol 16 (1) ◽  
pp. 43-47 ◽  
Author(s):  
M.G. Alexandrakis ◽  
D.S. Kyriakou ◽  
D. Seretakis ◽  
W. Boucher ◽  
R. Letourneau ◽  
...  

Mast cells play an important role in allergic inflammation by releasing histamine, tryptase and several inflammatory cytokines. Human leukemic mast cells (HMC-1) have been used to study mast cell mediators and their role in inflammatory mechanisms. HMC-1 contain and release several inflammatory mediators, of which the proteolytic enzyme tryptase is most characteristic. Retinoids, including retinoic acid, are naturally occurring and synthetic derivatives of vitamin A. All-trans-retinoic (ATRA) acid had been previously reported to inhibit cell proliferation, differentiation and apoptosis. In the present study, we investigated the effect of ATRA on the proliferation and secretion of tryptase in HMC-1. HMC-1 were treated with ATRA at 10-4M, 10-5M or 10-6M for 3,4 or 5 days in culture. Control HMC-1 were treated with equal amount of culture medium only. ATRA decreased the number of HMC-1 as compared to the control group. The same treatment for 3, 4 or 5 days also decreased intracellular tryptase levels. These results indicate that ATRA significantly inhibits both proliferation and growth as shown by the decreased intracellular tryptase levels in HMC-1. ATRA may be a useful agent in the treatment of mast cell proliferative disorders.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4178
Author(s):  
Ji-Ye Lim ◽  
Ji-Hyun Lee ◽  
Bo-Ri Lee ◽  
Mi Ae Kim ◽  
Young-Mi Lee ◽  
...  

Mast cells are effector cells that initiate allergic inflammatory immune responses by inducing inflammatory mediators. Boehmeria nivea (Linn.) Gaudich is a natural herb in the nettle family Urticaceae that possesses numerous pharmacological properties. Despite the various pharmacological benefits of Boehmeria nivea, its effects on allergic inflammation have not yet been determined. Here, we investigated the effect of the ethanol extract of Boehmeria nivea (BNE) on degranulation rat basophilic leukemia (RBL)-2H3 mast cells stimulated with anti-dinitrophenyl (anti-DNP) and bovine serum albumin (BSA) during immunoglobulin E (IgE)-mediated allergic immune response. The results showed inhibition of the release of β-hexosaminidase and histamine from the cells. BNE suppressed pro-inflammatory cytokines (Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6) and reduced T helper (Th)2 cytokine IL-4 expression and/or secretion correlated with the downregulation of p38, extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling pathways in treated RBL-2H3 mast cells. In passive cutaneous anaphylaxis, treatment with BNE during IgE-mediated local allergic reaction triggered a reduction in mouse ear pigmentation and thickness. Taken together, these results indicated that BNE suppressed mast cell-mediated inflammation, suggesting that BNE might be a candidate for the treatment of various allergic disorders.


1997 ◽  
Vol 77 (4) ◽  
pp. 1033-1079 ◽  
Author(s):  
D. D. Metcalfe ◽  
D. Baram ◽  
Y. A. Mekori

Mast cells are found resident in tissues throughout the body, particularly in association with structures such as blood vessels and nerves, and in proximity to surfaces that interface the external environment. Mast cells are bone marrow-derived and particularly depend upon stem cell factor for their survival. Mast cells express a variety of phenotypic features within tissues as determined by the local environment. Withdrawal of required growth factors results in mast cell apoptosis. Mast cells appear to be highly engineered cells with multiple critical biological functions. They may be activated by a number of stimuli that are both Fc epsilon RI dependent and Fc epsilon RI independent. Activation through various receptors leads to distinct signaling pathways. After activation, mast cells may immediately extrude granule-associated mediators and generate lipid-derived substances that induce immediate allergic inflammation. Mast cell activation may also be followed by the synthesis of chemokines and cytokines. Cytokine and chemokine secretion, which occurs hours later, may contribute to chronic inflammation. Biological functions of mast cells appear to include a role in innate immunity, involvement in host defense mechanisms against parasitic infestations, immunomodulation of the immune system, and tissue repair and angiogenesis.


2012 ◽  
Vol 40 (06) ◽  
pp. 1257-1270 ◽  
Author(s):  
Hui-Hun Kim ◽  
Jin-Su Yoo ◽  
Tae-Yong Shin ◽  
Sang-Hyun Kim

Allergic inflammatory diseases such as food allergy, asthma, sinusitis, and atopic dermatitis are increasing worldwide. In this study, we investigated the effects of aqueous extract of Mosla chinensis Max. (AMC) on mast cell-mediated allergic inflammation and studied the possible mechanism of this action. AMC inhibited compound 48/80-induced systemic and immunoglobulin E (IgE)-mediated local anaphylaxis. AMC reduced intracellular calcium levels and downstream histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. In addition, AMC decreased gene expression and secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 in human mast cells. The inhibitory effect of AMC on cytokine expression was nuclear factor (NF)-κB dependent. Our results indicate that AMC inhibits mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of proinflammatory cytokines and the involvement of calcium and NF-κB in these effects. AMC might be a possible therapeutic candidate for allergic inflammatory disorders.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Dimity H. Ball ◽  
Hwee Kee Tay ◽  
Kara S. Bell ◽  
Michelle L. Coates ◽  
Lamyaa Al-Riyami ◽  
...  

ES-62, an immunomodulator secreted by filarial nematodes, exhibits therapeutic potential in mouse models of allergic inflammation, at least in part by inducing the desensitisation of FcεRI-mediated mast cell responses. However, in addition to their pathogenic roles in allergic and autoimmune diseases, mast cells are important in fighting infection, wound healing, and resolving inflammation, reflecting that mast cells exhibit a phenotypic and functional plasticity. We have therefore characterised the differential functional responses to antigen (via FcεRI) and LPS and their modulation by ES-62 of the mature peritoneal-derived mast cells (PDMC; serosal) and those of the connective tissue-like mast cells (CTMC) and the mucosal-like mast cells derived from bone marrow progenitors (BMMC) as a first step to produce disease tissue-targeted therapeutics based on ES-62 action. All three mast cell populations were rendered hyporesponsive by ES-62 and whilst the mechanisms underlying such desensitisation have not been fully delineated, they reflect a downregulation of calcium and PKCαsignalling. ES-62 also downregulated MyD88 and PKCδin mucosal-type BMMC but not PDMC, the additional signals targeted in mucosal-type BMMC likely reflecting that these cells respond to antigen and LPS by degranulation and cytokine secretion whereas PDMC predominantly respond in a degranulation-based manner.


2000 ◽  
Vol 191 (5) ◽  
pp. 813-822 ◽  
Author(s):  
Virginia H. Secor ◽  
W. Evan Secor ◽  
Claire-Anne Gutekunst ◽  
Melissa A. Brown

In addition to their well characterized role in allergic inflammation, recent data confirm that mast cells play a more extensive role in a variety of immune responses. However, their contribution to autoimmune and neurologic disease processes has not been investigated. Experimental allergic encephalomyelitis (EAE) and its human disease counterpart, multiple sclerosis, are considered to be CD4+ T cell–mediated autoimmune diseases affecting the central nervous system. Several lines of indirect evidence suggest that mast cells could also play a role in the pathogenesis of both the human and murine disease. Using a myelin oligodendrocyte glycoprotein (MOG)-induced model of acute EAE, we show that mast cell–deficient W/Wv mice exhibit significantly reduced disease incidence, delayed disease onset, and decreased mean clinical scores when compared with their wild-type congenic littermates. No differences were observed in MOG-specific T and B cell responses between the two groups, indicating that a global T or B cell defect is not present in W/Wv animals. Reconstitution of the mast cell population in W/Wv mice restores induction of early and severe disease to wild-type levels, suggesting that mast cells are critical for the full manifestation of disease. These data provide a new mechanism for immune destruction in EAE and indicate that mast cells play a broader role in neurologic inflammation.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6930-6938 ◽  
Author(s):  
Jennifer N. Lilla ◽  
Ching-Cheng Chen ◽  
Kaori Mukai ◽  
Maya J. BenBarak ◽  
Christopher B. Franco ◽  
...  

Abstract It has been reported that the intracellular antiapoptotic factor myeloid cell leukemia sequence 1 (Mcl-1) is required for mast cell survival in vitro, and that genetic manipulation of Mcl-1 can be used to delete individual hematopoietic cell populations in vivo. In the present study, we report the generation of C57BL/6 mice in which Cre recombinase is expressed under the control of a segment of the carboxypeptidase A3 (Cpa3) promoter. C57BL/6-Cpa3-Cre; Mcl-1fl/fl mice are severely deficient in mast cells (92%-100% reduced in various tissues analyzed) and also have a marked deficiency in basophils (58%-78% reduced in the compartments analyzed), whereas the numbers of other hematopoietic cell populations exhibit little or no changes. Moreover, Cpa3-Cre; Mcl-1fl/fl mice exhibited marked reductions in the tissue swelling and leukocyte infiltration that are associated with both mast cell- and IgE-dependent passive cutaneous anaphylaxis (except at sites engrafted with in vitro–derived mast cells) and a basophil- and IgE-dependent model of chronic allergic inflammation, and do not develop IgE-dependent passive systemic anaphylaxis. Our findings support the conclusion that Mcl-1 is required for normal mast cell and basophil development/survival in vivo in mice, and also suggest that Cpa3-Cre; Mcl-1fl/fl mice may be useful in analyzing the roles of mast cells and basophils in health and disease.


2005 ◽  
Vol 289 (5) ◽  
pp. L856-L866 ◽  
Author(s):  
Delphine C. Malherbe ◽  
Veit J. Erpenbeck ◽  
Soman N. Abraham ◽  
Erika C. Crouch ◽  
Jens M. Hohlfeld ◽  
...  

Mast cells play a key role in allergy and asthma. They reside at the host-environment interface and are among the first cells to make contact with inhaled microorganisms and particulate antigens. Pulmonary surfactant proteins A and D (SP-A and SP-D) function in lung host defense by enhancing microbe phagocytosis and mediating other immune cell functions, but little is known about their effects on mast cells. We hypothesized that SP-A and/or SP-D modulate IgE-dependent mast cell functions. Pollen starch granules (PSG) extracted from Dactylis glomerata and coated with trinitrophenol (TNP) were used as a model of an inhaled organic particulate allergen. Our data revealed that SP-D inhibited by 50% the release of β-hexosaminidase by peritoneal mast cells sensitized with IgE anti-TNP and stimulated with TNP-PSG. In contrast, SP-A had no effect. Furthermore, SP-D aggregated PSG in a dose-dependent manner, and this aggregation was mediated by SP-D's carbohydrate recognition domain. A single arm SP-D mutant (RrSP-Dser15,20) neither aggregated PSG nor inhibited degranulation, suggesting that multimerization of SP-D is required for maximal PSG aggregation and inhibition of PSG-induced mast cell degranulation. This study is the first to demonstrate that SP-D modulates IgE-mediated mast cell functions, which are important in asthma and allergic inflammation.


Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 352-361 ◽  
Author(s):  
T Nakahata ◽  
SS Spicer ◽  
JR Cantey ◽  
M Ogawa

When mouse marrow and spleen cells were cultured for over 12 days in methylcellulose containing media conditioned by pokeweed-mitogen- stimulated spleen cells, colonies containing mast cells and blast cells were observed. The characteristic morphology of the colonies and the time course of their development allowed in situ identification of the mast cell colonies. Identification of the mast cells was confirmed by metachromatic staining with toluidine blue and alcian blue, transmission electron microscopy, and by demonstration of the membrane receptors for IgE. Coculture studies with male and female marrow cells strongly indicated the single cell origin of individual colonies. Detailed cytologic analyses of mixed hemopoietic colonies and replating experiments of individual mixed hemopoietic and mast cell colonies clearly established the hemopoietic origin of mast cells. In replating experiments of individual mast cell colonies, those without blast cells did not yield secondary mast cell colonies. This result strongly indicated that morphologically recognizable mast cells have lost their self-renewing capabilities. The quantitative nature of the mast cell colony assay was supported by linearity studies and provides a method for studies of the progenitors of mouse mast cells.


Sign in / Sign up

Export Citation Format

Share Document