scholarly journals Mast Cells Are Essential for Early Onset and Severe Disease in a Murine Model of Multiple Sclerosis

2000 ◽  
Vol 191 (5) ◽  
pp. 813-822 ◽  
Author(s):  
Virginia H. Secor ◽  
W. Evan Secor ◽  
Claire-Anne Gutekunst ◽  
Melissa A. Brown

In addition to their well characterized role in allergic inflammation, recent data confirm that mast cells play a more extensive role in a variety of immune responses. However, their contribution to autoimmune and neurologic disease processes has not been investigated. Experimental allergic encephalomyelitis (EAE) and its human disease counterpart, multiple sclerosis, are considered to be CD4+ T cell–mediated autoimmune diseases affecting the central nervous system. Several lines of indirect evidence suggest that mast cells could also play a role in the pathogenesis of both the human and murine disease. Using a myelin oligodendrocyte glycoprotein (MOG)-induced model of acute EAE, we show that mast cell–deficient W/Wv mice exhibit significantly reduced disease incidence, delayed disease onset, and decreased mean clinical scores when compared with their wild-type congenic littermates. No differences were observed in MOG-specific T and B cell responses between the two groups, indicating that a global T or B cell defect is not present in W/Wv animals. Reconstitution of the mast cell population in W/Wv mice restores induction of early and severe disease to wild-type levels, suggesting that mast cells are critical for the full manifestation of disease. These data provide a new mechanism for immune destruction in EAE and indicate that mast cells play a broader role in neurologic inflammation.

2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


2003 ◽  
Vol 16 (1) ◽  
pp. 43-47 ◽  
Author(s):  
M.G. Alexandrakis ◽  
D.S. Kyriakou ◽  
D. Seretakis ◽  
W. Boucher ◽  
R. Letourneau ◽  
...  

Mast cells play an important role in allergic inflammation by releasing histamine, tryptase and several inflammatory cytokines. Human leukemic mast cells (HMC-1) have been used to study mast cell mediators and their role in inflammatory mechanisms. HMC-1 contain and release several inflammatory mediators, of which the proteolytic enzyme tryptase is most characteristic. Retinoids, including retinoic acid, are naturally occurring and synthetic derivatives of vitamin A. All-trans-retinoic (ATRA) acid had been previously reported to inhibit cell proliferation, differentiation and apoptosis. In the present study, we investigated the effect of ATRA on the proliferation and secretion of tryptase in HMC-1. HMC-1 were treated with ATRA at 10-4M, 10-5M or 10-6M for 3,4 or 5 days in culture. Control HMC-1 were treated with equal amount of culture medium only. ATRA decreased the number of HMC-1 as compared to the control group. The same treatment for 3, 4 or 5 days also decreased intracellular tryptase levels. These results indicate that ATRA significantly inhibits both proliferation and growth as shown by the decreased intracellular tryptase levels in HMC-1. ATRA may be a useful agent in the treatment of mast cell proliferative disorders.


2012 ◽  
Vol 393 (12) ◽  
pp. 1555-1567 ◽  
Author(s):  
Ida Waern ◽  
Iulia Karlsson ◽  
Michael Thorpe ◽  
Susan M. Schlenner ◽  
Thorsten B. Feyerabend ◽  
...  

Abstract Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin, a proteoglycan with heparin side chains. Hence, serglycin-protease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation, whereas serglycin–/– MCs completely lacked this ability. Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist, which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex. Moreover, IL-13 degradation was abrogated in MC-CPA–/– MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein. Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4178
Author(s):  
Ji-Ye Lim ◽  
Ji-Hyun Lee ◽  
Bo-Ri Lee ◽  
Mi Ae Kim ◽  
Young-Mi Lee ◽  
...  

Mast cells are effector cells that initiate allergic inflammatory immune responses by inducing inflammatory mediators. Boehmeria nivea (Linn.) Gaudich is a natural herb in the nettle family Urticaceae that possesses numerous pharmacological properties. Despite the various pharmacological benefits of Boehmeria nivea, its effects on allergic inflammation have not yet been determined. Here, we investigated the effect of the ethanol extract of Boehmeria nivea (BNE) on degranulation rat basophilic leukemia (RBL)-2H3 mast cells stimulated with anti-dinitrophenyl (anti-DNP) and bovine serum albumin (BSA) during immunoglobulin E (IgE)-mediated allergic immune response. The results showed inhibition of the release of β-hexosaminidase and histamine from the cells. BNE suppressed pro-inflammatory cytokines (Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6) and reduced T helper (Th)2 cytokine IL-4 expression and/or secretion correlated with the downregulation of p38, extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling pathways in treated RBL-2H3 mast cells. In passive cutaneous anaphylaxis, treatment with BNE during IgE-mediated local allergic reaction triggered a reduction in mouse ear pigmentation and thickness. Taken together, these results indicated that BNE suppressed mast cell-mediated inflammation, suggesting that BNE might be a candidate for the treatment of various allergic disorders.


2013 ◽  
Vol 304 (12) ◽  
pp. G1087-G1094 ◽  
Author(s):  
Rituraj Niranjan ◽  
Parm Mavi ◽  
Madhavi Rayapudi ◽  
Scott Dynda ◽  
Anil Mishra

Eosinophilic esophagitis (EoE) is a chronic allergic disease characterized by esophageal intraepithelial eosinophils, extracellular eosinophil granule deposition, induced mast cell accumulation, and epithelial cell hyperplasia. However, the processes involved in the development of a number of these characteristics are largely unknown. Herein, we tested the hypothesis whether induced mast cell accumulation in the esophagus has a role in promoting EoE pathogenesis. Accordingly, we induced experimental EoE in wild-type mice, mast cell-deficient WWv mice, and mast cell-reconstituted WWv mice. We report that esophageal mast cell numbers increase in parallel with eosinophils in a dose- and time-dependent manner following the induction of allergen-induced EoE. The induced mast cells are localized in the esophageal lamina propria and muscular mucosa but have no influence on promoting esophageal eosinophilia. The 5′-bromodeoxyuridine (BrdU) incorporation analysis indicated that mast cells have a significant role in muscle cell hyperplasia and hypertrophy. In addition, the wild-type and mast cell-reconstituted WWv mice showed a comparable number of BrdU+ cells in the esophageal muscular mucosa following allergen-induced EoE. In conclusion, we provide for the first time direct evidence that mast cell promotes muscle cell hyperplasia and hypertrophy and may have a significant role in promoting esophageal functional abnormalities in EoE.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1707-1707
Author(s):  
Giovanni Migliaccio ◽  
Barbara Ghinassi ◽  
Lucia Centurione ◽  
Maria Zingariello ◽  
Lucia Bianchi ◽  
...  

Abstract Megakaryocytopoiesis is regulated by extrinsic (interaction of the growth factor thrombopoietin, TPO with its receptor Mpl) and intrinsic (interaction between the trascription factors GATA-1 and Fog-1) factors. The observation that mice impaired for GATA-1 expression (i.e. harbouring the GATA-1low mutation) are defective not only in megakaryocyte maturation but also in mast cell differentiation (Migliaccio et al. J Exp Med197:281, 2003), led us to investigate whether TPO might control mast cell differentiation as well. We first observed that mice genetically unable to responde to TPO (Mplnull mice) express in the connective tissues 5 times more mast cells than their normal littermates. Then, we analysed the effects on mast cell differentiation of in vivo treatment with TPO. Normal mice, and their GATA-1low littermates, were injected i.p. with TPO (100 μg/kg/day per 5 days, kindly provided by Kirin Brewery, Japan) and the number of immature (Toluidinepos) and mature (AlcianBlue/Saphraninepos) mast cells present in the connective tissues of the animals, as well as the frequency of GATA-1pos and TUNELpos mast cells, was evaluated 14 days after treatment. In wild-type animals, TPO reduced the presence of GATA-1 in mast cells (by immuno-histochemistry) and increased the number of immature cells (from 320±28 to 852±60) and of those undergoing apoptosis (from 16±1 to 600±43). In contrast, in GATA-1low animals, TPO-treatment induced the expression of GATA-1 in mast cells while decreased the number of immature cells (from 1100±72 to 427±29) as well as that of apoptotic cells (from 600±45 to 60±2). The role of TPO on mast cell differentiation were further confirmed by the analysis of the effects exerted by the growth factor on in vitro differentiation of bone marrow derived mast cells (BMMC). In these experiments, wild type bone marrow and spleen cells were cultured for 21 days with SCF and IL-3 with or without TPO and BMMC differentiation measured on the basis of the number of cells expressing the phenotype c-kithigh/CD34high and FcεRIpos. In cultures stimulated with SCF and IL-3, all the cells expressed the phenotype c-kithigh/CD34high and FcεRIpos. In contrast, in cultures supplemented also with SCF, IL-3 and TPO, only 25% of the cells were c-kithigh/CD34high and none of them was FcεRIpos. These results establish a role for TPO in the control of mast cell differentiation (possibly by modulating the GATA-1 content of the cells) and unveil further similarities between the mechanism(s) controlling megakaryocyte and mast cell differentiation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3528-3528 ◽  
Author(s):  
Srdan Verstovsek ◽  
Cem Akin ◽  
Giles J. Francis ◽  
Manshouri Taghi ◽  
Ly Huynh ◽  
...  

Abstract Background. Majority of adult patients with systemic mastocytosis (SM) have activating mutation in codon 816 of c-kit (CD117), a receptor on the surface of mast cells. This abnormality is responsible for the pathogenesis of the disease. Methods. We investigated the effects of a newly designed tyrosine kinase inhibitor, AMN107, by comparing its in vitro inhibitory potency on c-kit mutated mast cell lines and patient samples with that of imatinib mesylate, another tyrosine kinase inhibitor, effective in some patients with SM. Two cell lines, subclones of HMC-1 cells, were used: HMC-1560 carrying juxtamembrane domain mutation in codon 560 of c-kit, and HMC-1560, 816 carrying both codon 560 mutation and tyrosine kinase domain mutation in codon 816 of c-kit. Results. In HMC-1560 mast cell line carrying wild-type codon 816, AMN107 was as potent as imatinib in inhibiting cellular proliferation, with IC50 values of 108 and 74 nM respectively, while in HMC-1560, 816 cell line carrying 816 mutation, neither medication had an effect. AMN107 was also as effective as imatinib in inhibiting phosphorylation of c-kit tyrosine kinase in HMC-1560 cells. The inhibition of cellular proliferation was associated with induction of apoptosis in HMC-1560 cells. AMN107 in concentrations up to 1 uM had no effect on bone marrow mast cells carrying D816V c-kit mutation obtained from patients with mastocytosis. Conclusions. Our results suggest similar potency of AMN107 and imatinib in mast cells that carry wild-type codon 816, but no activity against codon 816 mutation carrying cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1335-1335
Author(s):  
Fabrizio Martelli ◽  
Giovanni Amabile ◽  
Barbara Ghinassi ◽  
Rodolfo Lorenzini ◽  
Alessandro M. Vannucchi ◽  
...  

Abstract Mast cells are hematopoietic cells localized in extramedullary sites where they engage themselves in the process of allergic response and in the immune reaction against parasites. Mast cells derive from multilineage c-KitlowCD34lowSca-1pos progenitor cells present in the marrow. These cells give rise to Linnegc-KitposSca-1neg T1/ST2pos mast cell restricted progenitor cells (MCP) whose futher maturation in the marrow remains limited under steady state conditions. MCP migrate through the blood in extramedullary sites were they mature into tissue-retricted c-KitposFceRIpos mast cells characterized by a specific mast cell protease (MMCP) profiling (dermal, mucosal and serosal mast cells in skin, gut and peritoneal cavity, respectively). The molecular mechanism that, in normal mice, restricts the mastocytopoietic potential of progenitor cells to the extramedullary sites, as well as the factors that guide the tissue-restricted differentiation of these cells, are unknown. Thrombopoietin (TPO)-Mpl interactions play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation in the marrow. Here we report that mast cells, and their precursors, express Mpl (both as mRNA and cell surface protein) (see Table). Furthermore, targeted deletion of this gene (Mplnull mutation) decrease the number of MCP (by 1-log) and increases that of mast cells in dermis (by 3-fold), peritoneal cavity (by 3-fold), bone marrow (2-log) and spleen (2-log). Furthermore, because of their higher (by 2-log) MMCP-7 expression, serosal Mplnull mast cells resemble more wild-type dermal rather than serosal mast cells. On the other hand, either treatment of mice with TPO or addition of TPO to bone marrow-derived mast cell cultures induces mast cell apoptosis (by Tunel and Annexin staining) and severely hampers mast cell differentiation (by expression profiling). These data are consistent with a regulatory mechanism for murine mastocytopoiesis according to which TPO favours the transition from multilineage progenitors to CMP but blocks differentiation of MCP to mature mast cells. We propose TPO as the growth factor that restrict mast cell differentiation to extramedullaty sites and that control the switch between serosal vs dermal mast cell differentiation. Mpl expression mRNA 2-ΔCt Protein (AFU) Cy7-A Protein (AFU) Cy7-AMM2 AFU= arbitrary fluorescence intensity. p< 0.01 with respect to Cy7-A (irrilevant antibody) Wild type Marrow B cells (B220pos) b.d. 120±4 205±4 Wild type Marrow Megakaryocytes (CD61pos/CD41pos) 5.0±0.1 × 10-2 178±3 978±74* Wild type Marrow MCP (cKitpos/T1ST2pos) 1.3±0.01 × 10-2 139±16 1658±73* Wild-type Marrow Mast Cells (cKitpos/Fcε RIpos) 1.9±0.1 × 10-2 110±1 868±71* Serosal Mast Cells (cKitpos/FcεRIpos) 7.2±2.1 × 10-4 393±1 1374±25* Mplnull Marrow Megakaryocytes (CD61pos/CD41pos) b.d. 365±28 469±50 Mplnull Marrow Mast Cells (cKitpos/FcεRIpos) b.d 107±1 109±3


2016 ◽  
Vol 48 (2) ◽  
pp. 380-392 ◽  
Author(s):  
Fien C. Devos ◽  
Brett Boonen ◽  
Yeranddy A. Alpizar ◽  
Tania Maes ◽  
Valérie Hox ◽  
...  

Asthma may be induced by chemical sensitisers,viamechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitrointracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using anin vivomodel, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, inTrpa1andTrpv1knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficientKitWsh/Wshmice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.


1997 ◽  
Vol 77 (4) ◽  
pp. 1033-1079 ◽  
Author(s):  
D. D. Metcalfe ◽  
D. Baram ◽  
Y. A. Mekori

Mast cells are found resident in tissues throughout the body, particularly in association with structures such as blood vessels and nerves, and in proximity to surfaces that interface the external environment. Mast cells are bone marrow-derived and particularly depend upon stem cell factor for their survival. Mast cells express a variety of phenotypic features within tissues as determined by the local environment. Withdrawal of required growth factors results in mast cell apoptosis. Mast cells appear to be highly engineered cells with multiple critical biological functions. They may be activated by a number of stimuli that are both Fc epsilon RI dependent and Fc epsilon RI independent. Activation through various receptors leads to distinct signaling pathways. After activation, mast cells may immediately extrude granule-associated mediators and generate lipid-derived substances that induce immediate allergic inflammation. Mast cell activation may also be followed by the synthesis of chemokines and cytokines. Cytokine and chemokine secretion, which occurs hours later, may contribute to chronic inflammation. Biological functions of mast cells appear to include a role in innate immunity, involvement in host defense mechanisms against parasitic infestations, immunomodulation of the immune system, and tissue repair and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document