scholarly journals Climate, landscape and vegetation controls of behavioral catchments on dominant runoff response and catchment travel time distribution

Author(s):  
Chatchai Jothityangkoon ◽  
Haruetai Maskong

The three dominant processes contributing to runoff as proposed by the Dunne diagram are Hortonian overland flow (HOF), Dunne overland flow (DOF) and subsurface storm flow (SSF). Using a theoretical perspective, we investigate the impact of climate, soil, topography and vegetation on catchment water balance and the probability distribution of the travel times of each runoff generation component in respect of the connected instantaneous response function (CIRF) including the interaction of a partial contributing area connecting to the outlet. A simple distributed hydrologic model is used to capture the effect of the catchment response and to estimate the CIRFs under different possible integration of combined effect of climate, soil, topography and vegetation. A set of dimensionless similarity parameters represent catchment functions and provide a quantitative explanation of the conceptual Dunne diagram. Behavioral catchments are defined from the empirical range of the Budyko curve and mainly compatible to the physical relationship as illustrated in the Dunne diagram. The results consistent with the Dunne diagram are: (1) DOF and SSF dominates in humid for behavioral sand and silt catchments, (2) HOF dominates in arid for behavioral silt and clay catchments. Inconsistent results are: (1) SSF dominates in arid for behavioral sand, silt and clay catchments, (2) HOF dominates in humid for behavioral clay catchment and (3) no dominant HOF for behavioral sand catchment. For HOF and DOF dominates, the distribution of CIRFs can be grouped into similar shapes, which depend on the relative contribution of hillslope scale and catchment scale. For SSF behavioral catchments, the shape of the CIRFs depends on the dryness index. The combined catchment CIRFs of mean travel time for runoff responses consists with the higher first peak from the HOF and/or DOF and the second peak from the SSF.

2021 ◽  
Author(s):  
Bob W. Zwartendijk ◽  
H.J. (Ilja) van Meerveld ◽  
Ryan J. Teuling ◽  
Chandra P. Ghimire ◽  
L. Adrian Bruijnzeel

<p>In many tropical areas slash-and-burn agriculture is an important driver of forest loss. In areas where slash-and-burn agriculture has been practiced for decades, land cover is typically a mosaic of patches of remnant forest, fields under active cultivation, fallows in various stages of regrowth (ranging from young shrub to semi-mature), and degraded fire-climax grasslands. Although runoff generation mechanisms are expected to be different for these different patches, little quantitative information is available in this regard, particularly at the catchment scale and over longer time-scales (i.e., multiple slash-and-burn cycles).</p><p>We re-instrumented a 31 ha catchment in upland Eastern Madagascar, where slash-and-burn agriculture has been practiced for more than 70 years in 2015; it had been monitored between 1963 and 1972 as well<sup>1</sup>. We measured streamflow at two locations and overland flow and soil moisture for four hillside plots (0.05 – 1.93 ha): one plot under repeatedly coppiced and burned <em>Eucalyptus</em> and three plots under young shrub and tree fallows. One of the plots underwent rudimentary terracing in the past. We analysed the rainfall-runoff dynamics for 50 rainfall events (median 12 mm, maximum 71 mm).</p><p>For 60% of the events, the stormflow coefficient (minimum contributing area) was <3%, which is the proportion of valley-bottom wetlands and rice paddies in the catchment. Stable isotope sampling for five storm runoff events indicate a maximum total event-water contribution of 16%. However, instantaneous event-water contributions were as high as 66%. The hillside plot runoff response was dominated by saturation-excess overland flow and showed strong threshold behaviour in terms of the antecedent soil moisture storage in the upper 30 cm of the soil plus the event total rainfall amount (ASI + P). Average threshold values for overland flow occurrence ranged from 87 mm for the coppiced <em>Eucalyptus</em> to 137 mm for the young fallow plots (regardless of terrace presence). Stormflow also increased after an ASI+P-threshold was exceeded (100 mm based on the soil moisture sensors for the <em>Eucalyptus</em> plot and 150 mm for the sensors at the tree fallow plots).</p><p>These results indicate an increased hydrological connectivity between hillslopes and valley bottom under wetter conditions and that stormflow in the study catchment is strongly affected by variations in seasonal rainfall. The results will be used to validate a hydrological model to determine the net effect of concurrent changes in soil infiltrability and vegetation water use associated with forest loss and recovery on stormflow totals and the seasonal flow regime.</p><p><strong><sup>1</sup></strong>Bailly, C., de Coignac, G.B., Malvos, C., Ningre, J.M., and Sarrailh, J.M. (1974). Étude de l'influence du couvert naturel et de ses modifications á Madagascar. Expérimentations en bassins versants élémentaires. Cahiers Scientifiques, 4. Centre Scientifique Forestier Tropical, Nogent-sur-Marne, France, 114 pp.</p>


2012 ◽  
Vol 13 (3) ◽  
pp. 785-807 ◽  
Author(s):  
Agustín Robles-Morua ◽  
Enrique R. Vivoni ◽  
Alex S. Mayer

Abstract A distributed hydrologic model is used to evaluate how runoff mechanisms—including infiltration excess (RI), saturation excess (RS), and groundwater exfiltration (RG)—influence the generation of streamflow and evapotranspiration (ET) in a mountainous region under the influence of the North American monsoon (NAM). The study site, the upper Sonora River basin (~9350 km2) in Mexico, is characterized by a wide range of terrain, soil, and ecosystem conditions obtained from best available data sources. Three meteorological scenarios are compared to explore the impact of spatial and temporal variations of meteorological characteristics on land surface processes and to identify the value of North American Land Data Assimilation System (NLDAS) forcing products in the NAM region. The following scenarios are considered for a 1-yr period: 1) a sparse network of ground-based stations, 2) raw forcing products from NLDAS, and 3) NLDAS products adjusted using available station data. These scenarios are discussed in light of spatial distributions of precipitation, streamflow, and runoff mechanisms during annual, seasonal, and monthly periods. This study identified that the mode of runoff generation impacts seasonal relations between ET and soil moisture in the water-limited region. In addition, ET rates at annual and seasonal scales were related to the runoff mechanism proportions, with an increase in ET when RS was dominant and a decrease in ET when RI was more important. The partitioning of runoff mechanisms also helps explain the monthly progression of runoff ratios in these seasonally wet hydrologic systems. Understanding the complex interplay between seasonal responses of runoff mechanisms and evapotranspiration can yield information that is of interest to hydrologists and water managers.


2008 ◽  
Vol 39 (1) ◽  
pp. 1-16 ◽  
Author(s):  
M. Johst ◽  
S. Uhlenbrook ◽  
N. Tilch ◽  
B. Zillgens ◽  
J. Didszun ◽  
...  

The development of process-oriented hydrological models, which are able to simulate hydrological processes distributed in space and time, is crucial for optimal management of water resources. The model TACD (tracer aided catchment model, distributed) was modified and applied to the mountainous Loehnersbach catchment (16 km2), Kitzbueheler Alps, Austria, with the aim of simulating the dominant hydrological processes in a distributed way. It can be seen as a further developed, fully distributed version of the HBV-model with a more process-based runoff generation routine, which uses a spatial delineation of hydrological response units (HRUs). Good overall runoff simulations could be obtained for the whole catchment. Additional data, i.e. discharge from sub-catchments, snow height measurements and dissolved silica concentrations, enabled to some extent the evalulation of the simulation of single processes. Certain periods, e.g. short-term runoff fluctuations during snow melt periods, could not be simulated well even when different model modifications were executed. This indicates model shortcomings because of incomplete process understanding and the necessity for further experimental research as well as for new concepts of model structure. In particular, the understanding and mathematical description of subsurface storm flows has to be improved. The impact of different HRU delineations on discharge simulations at the catchment outlet was relatively low, as long as the direct runoff producing units remained constant. However, the impact on runoff predictions at sub-catchment scale was significant. This indicates an ’averaging out’ effect for peculiarities and errors of runoff predictions at larger scales.


2020 ◽  
Vol 12 (18) ◽  
pp. 3051
Author(s):  
Seokhyeon Kim ◽  
Hoori Ajami ◽  
Ashish Sharma

Appropriate representation of the vegetation dynamics is crucial in hydrological modelling. To improve an existing limited vegetation parameterization in a semi-distributed hydrologic model, called the Soil Moisture and Runoff simulation Toolkit (SMART), this study proposed a simple method to incorporate daily leaf area index (LAI) dynamics into the model using mean monthly LAI climatology and mean rainfall. The LAI-rainfall sensitivity is governed by a parameter that is optimized by maximizing the Pearson correlation coefficient (R) between the estimated and satellite-derived LAI time series. As a result, the LAI-rainfall sensitivity is smallest for forest, shrub, and woodland regions across Australia, and increases for grasslands and croplands. The impact of the proposed method on catchment-scale simulations of soil moisture (SM), evapotranspiration (ET) and discharge (Q) in SMART was examined across six eco-hydrologically contrasted upland catchments in Australia. Results showed that the proposed method produces almost identical results compared to simulations by the satellite-derived LAI time series. In addition, the simulation results were considerably improved in nutrient/light limited catchments compared to the cases with the default vegetation parameterization. The results showed promise, with possibilities of extension to other hydrologic models that need similar specifications for inbuilt vegetation dynamics.


2014 ◽  
Vol 11 (2) ◽  
pp. 1871-1945 ◽  
Author(s):  
I. Braud ◽  
P.-A. Ayral ◽  
C. Bouvier ◽  
F. Branger ◽  
G. Delrieu ◽  
...  

Abstract. This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1–100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100–1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012–2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.


2020 ◽  
Author(s):  
Arthur Gaillot ◽  
Célestine Delbart ◽  
Pierre Vanhooydonck ◽  
Olivier Cerdan ◽  
Sébastien Salvador-Blanes

<p>Since the 1960’s, large landscape modifications were carried out to improve agriculture productivity. One of these changes was the ploughing of humid plains together with the installation of subsurface drainage, which currently represents 10 % of arable lands in the world. Studies have shown the impact of subsurface drainage on the water regime, and especially decreases in flow peaks. Drainage increases water and sediment connectivity. Less effort was devoted to investigate the impact on the erosion dynamics and very few studies were designed at the catchment scale. However, the understanding of water and suspended solids dynamics from field to catchment outlet is a key to set efficient conservation measures to reduce erosion up. Here we focus on water and suspended solids dynamics from the soil profile scale to the field scale. We propose to trace both water and suspended solids to determine the relative contributions between surface and subsurface sources. Water tracing gives indication on  pathways while suspended solids trace sources (i.e. soil surface vs. deeper soil). The study site is composed of a 5ha field within a 2500 ha agricultural catchment representative of the French agricultural intensive openfield catchments. The studied field is representative of the catchment. It is a cereal crops openfield. Two drainage methods exist in the field: subsurface drainage with drains 120 cm-deep and surface drainage with artificial channels created after the winter seeding. The soil in this field is a loamy clay soil with clay floor at 45 cm of depth. Quantification of suspended solids and water fluxes (surface and subsurface) are monitored at high temporal resolution both at the field (since January 2019) and catchment (since September 2013) scale. Since November 2019, we trace water flows (rain, soil water subsurface flow and overland flow) using water ions and stable isotopes. Suspended solids are analysed through their mineralogy and primary particle size. At the field scale, the first results show a rapid response of surface drainage to rain inputs - confirmed by ions tracing - and suspended solids are mainly coming from surface drainage. Subsurface drainage reacts with a significant delay. Ions tracing shows that subsurface runoff seems to result from a replacement of older soil water by rain inputs.</p>


2012 ◽  
Vol 44 (2) ◽  
pp. 318-333 ◽  
Author(s):  
Sebastian Wrede ◽  
Jan Seibert ◽  
Stefan Uhlenbrook

Operational management and prediction of water quantity and quality often requires a spatially meaningful simulation of environmental flows and storages at the catchment scale. In this study, the performance of a fully distributed conceptual hydrologic model was evaluated based on the HBV (Hydrologiska Byråns Vattenbalansavdelning) and TACD (Tracer Aided Catchment model – Distributed) model concept in the meso-scale Fyrisån catchment in the Central Swedish lowlands. For a more spatially explicit representation of runoff generation processes of small landscape elements such as wetlands, a new sub-grid parameterization scheme was implemented in the model. In addition, a simple flow distribution and lake retention routine was introduced to better conceptualize the flow routing. During intensive model evaluation and comparison the model underwent conventional split-sample and proxy-basin tests. In this process, shortcomings of the model in the transferability of parameter sets and in the spatial representation of runoff generating processes were found. It was also demonstrated how a detailed comparison with a lumped benchmark model and the additional use of synoptic stream flow measurements allowed further insights into the model performance. It could be concluded that such a thorough model assessment can help to detect shortcomings in the spatial representation of the model and help facilitate model development.


Soil Research ◽  
1995 ◽  
Vol 33 (4) ◽  
pp. 715 ◽  
Author(s):  
RK Misra ◽  
CW Rose

Erosion rate of soil by the impact of raindrops and overland flow of water is often considered to be affected by the shear strength of surface soil. Physically based erosion models indicate a link between defined erodibility parameters and soil strength. The objectives of this paper are to determine erodibility parameters with the process-based erosion model GUEST for a. krasnozem soil of two contrasting strengths, and to examine the influence of soil strength on erodibility parameters. Soil beds of width 1 m and length 5.8 m, with and without compaction, were exposed to simulated, constant rate rainfall. A range of slopes was used. Detachment trays of width 300 mm and downslope length 200 mm containing soils of identical strength were placed at the same slope and exposed to the same rain in order to determine the effects of rainfall-driven processes alone on erosion. Soil strength was measured with a hand vane tester and a pocket penetrometer to determine whether compaction was effective in modifying soil strength. Temporal variation in sediment concentrations (c) for the large soil beds and detachment trays was measured for each slope and soil strength. The settling velocity characteristic of soil, with and without exposure to rain, was determined with the modified bottom withdrawal tube technique. Values of c decreased with increase in soil strength. The relationship between c and slope was influenced by soil strength in a manner consistent with the theoretical expectation of the role of soil strength in controlling erosion. Rilling during erosion was absent only when the soil was compacted. The average settling velocity of the soil exposed to rain (i.e. its depositability) was significantly lower than for the same soil not subjected to rain, indicating a breakdown of soil aggregates as a result of raindrop impact. Rainfall detachability parameters (estimated with GUEST) Were lower when soil strength was high. Runoff-driven erodibility parameters, namely the specific energy of entrainment (J), increased and the approximate erodibility parameter (�) decreased with increase in soil strength. The Variation in these erodibility parameters with soil strength was consistent with the theory implemented in GUEST. Detailed analysis of the relative contribution of rainfall- and runoff-driven processes to c at varying stream powers and soil strengths indicated that, at high soil strength, uncertainty in the values of J and � is high because of the higher contribution to c of rainfall-driven rather than runoff-driven processes. The adequacy of in situ measurement of soil strength as an indicator of soil erodibility is discussed in relation to the results presented.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1201
Author(s):  
Aristeidis Kastridis

The current review summarizes the knowledge generated by the recently published studies of the last twenty years, in the field of forest road networks, concerning the impact of forest road construction on hydrological processes. The currently applied methodology techniques/practices are discussed, the findings are highlighted and effective mitigation measures to mitigate the impact of forest roads are proposed. Critical for the minimization of the impact of forest roads on overland flow is the significant decrease in road surface runoff and overland flow velocity. The decrease in runoff energy reduces the detachment of soil particles and transportation in streams. The disturbances of forest roads in logging areas should be limited to decrease soil erosion. Additionally, aiming to minimize sediment transportation into the streams, it is very important to reduce the connectivity between the forest roads (or skid trails) and streams. The positive role of vegetation and organic matter on the road prism, naturally/technically established riparian buffers along the streams, and the use of appropriate bioengineering designs for each area significantly decrease the runoff generation and sedimentation. From a construction point of view, the decrease in short and long-term forest road-related impact could be achieved by reducing the depth of excavations and the use of soil compaction limiting technology during forest works. The road network design should be more efficient, avoiding hydrologically active zero-order basins. Techniques that minimize the length and connectivity among skid trails, unpaved roads and streams are highly crucial. Broad-based dips, immediate revegetation and outsloping of the road base are considered good road construction practices. Research should be focused on the hydrologic behavior of forest road networks and on the impact at the watershed scale, the degree of connectivity, utilizing plenty of qualitative field data, especially during intense rainfall events, which has been proven to exacerbate the runoff and sediment generation and transportation into the stream networks.


2014 ◽  
Vol 18 (9) ◽  
pp. 3681-3692 ◽  
Author(s):  
A. I. Gevaert ◽  
A. J. Teuling ◽  
R. Uijlenhoet ◽  
S. B. DeLong ◽  
T. E. Huxman ◽  
...  

Abstract. Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.


Sign in / Sign up

Export Citation Format

Share Document