scholarly journals The photoperiodic control of growth and development of Chenopodium rubrum L. plants in vitro

2007 ◽  
Vol 59 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Aleksandra Mitrovic ◽  
Z. Giba ◽  
Ljubinka Culafic

Influence of the photoperiod on growth, flowering, and seed development in vitro of Chenopodium rubrum L., a short day annual, was examined. Chenopodium rubrum plants modify their growth and reproductive development in accordance with the photoperiod. With an increase of day length, growth was stimulated, flowering was delayed, seed development occurred earlier, and the plants produced more seeds. By altering photoperiods during induction and evocation of flowering, it is shown that the photoperiod experienced by seedlings during early reproductive development determines the pattern of plant growth to the end of ontogenesis, the time to flowering, and the course of seed development. It is therefore concluded that growth and reproductive development of C. rubrum are photoperiod-sensitive to during a precise short part of its life cycle. .

2020 ◽  
Vol 72 (3) ◽  
pp. 349-357
Author(s):  
Tatjana Cosic ◽  
Jelena Savic ◽  
Martin Raspor ◽  
Aleksandar Cingel ◽  
Nabil Ghalawnji ◽  
...  

Kohlrabi (Brassica oleracea var. gongylodes), with its edible stem tuber formed at the base of the plant stem, presents a valuable source of nutrients. The potential effects of plant growth regulators (PGRs), as well as various concentrations of different sugars on the in vitro development of kohlrabi were studied. Ten-day-old kohlrabi seedlings were cultivated in vitro for 5 weeks at 18?2?C on half-strength MS media containing different concentrations of carbon source such as sucrose, fructose, glucose, xylose and mannitol, combined with or without specific plant growth regulators (N6-benzyladenine (BA), gibberellic acid (GA3), 2,3,5-triiodobenzoic acid (TIBA)). Results showed no tuber formation in all treatments, but growth and development of treated kohlrabi seedlings was significantly affected in a distinctive manner, with a variety of morphological traits being altered in comparison to matching controls.


Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Rihab Djebaili ◽  
Marika Pellegrini ◽  
Massimiliano Rossi ◽  
Cinzia Forni ◽  
Maria Smati ◽  
...  

This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 54-59 ◽  
Author(s):  
AM Farese ◽  
P Hunt ◽  
T Boone ◽  
TJ MacVittie

Megakaryocyte growth and development factor (MGDF) is a novel cytokine that binds to the c-mpl receptor and stimulates megakaryocyte development in vitro and in vivo. This report describes the ability of recombinant human (r-Hu) MGDF to affect megakaryocytopoiesis in normal nonhuman primates. r-HuMGDF was administered subcutaneously to normal, male rhesus monkeys once per day for 10 consecutive days at dosages of 2.5, 25, or 250 micrograms/kg of body weight. Bone marrow and peripheral blood were assayed for clonogenic activity and peripheral blood counts were monitored. Circulating platelet counts increased significantly (P < .05) for all doses within 6 days of r-HuMGDF administration and reached maximal levels between day 12 and day 14 postcytokine administration. The 2.5, 25.0, and 250.0 micrograms/kg/d doses elicited peak mean platelet counts that were 592%, 670%, and 449% of baseline, respectively. Bone marrow-derived clonogenic data showed significant increases in the concentration of megakaryocyte (MEG)- colony-forming unit (CFU) and granulocyte-erythroid-macrophage- megakaryocyte (GEMM)-CFU, whereas that of granulocyte-macrophage (GM)- CFU and burst-forming unit-erythroid (BFU-e) remained unchanged during the administration of r-HuMGDF. These data show that r-HuMGDF is a potent stimulator of thrombocytopoiesis in the normal nonhuman primate.


2019 ◽  
Vol 805 ◽  
pp. 141-145
Author(s):  
Nguyen Phuc Thien

The aim of these studies was mainly to investigate the effects of monochromatic LEDs applied singly on the in vitro plant growth and morphogenesis. Various morphological and physiological parameters are considered that influence the growth and development of plants in vitro under red LED light as compared to those under normal light. Upon exposure to LED, in vitro-raised plants have shown significant improvements in growth and morphogenesis. In particular, red and blue lights, either alone or in combination, have a significant influence on plant growth. The present study gives an overview of the fundamentals of LEDs and describes their effects on in vitro plant growth and morphogenesis and their future potentials. The main objective of this study was to carry out line and combing ability of plant growth on tomato.


Planta ◽  
2015 ◽  
Vol 242 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Jaime A. Teixeira da Silva ◽  
Elena A. Tsavkelova ◽  
Songjun Zeng ◽  
Tzi Bun Ng ◽  
S. Parthibhan ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 43-48
Author(s):  
Sempurna Ginting ◽  
Tri Sunardi ◽  
Chaincin Buana Sari ◽  
Risky Hadi Wibowo

Evaluation of various natural diets for mass rearing of Spodoptera frugiperda J.E Smith (Lepidoptera: Noctuidae). Spodoptera frugiperda is one of the pests that attack corn in Indonesia. This study aimed to evaluate the most suitable diet for rearing of S. frugiperda from various natural diets. The study was conducted in vitro. The treatments were consisted of variation on S. frugiperda natural diets, such as maize leaf, green mustard leaf, water spinach, sweet potato leaf, sugar cane leaf, and soybeans leaf. The observed variables were life cycle period, pupa size, and pupa weight. The results showed that the shortest life cycle period was on corn leaves diet (40.92 days), and the longest was on sugarcane leaves (45.01 days). The longest size of pupa were S. frugiperda on mustard leaves diet (12.86 mm) and corn leaves (12.56 mm), The heaviest pupa weights were observed in S. frugiperda on mustard leaves diet (0.18 mg), and corn leaves (0.16 mg). Based on the data, it could be concluded that corn leaves were the most suitable type of diet for the growth and development of S. frugiperda.


Sign in / Sign up

Export Citation Format

Share Document