scholarly journals Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress

2016 ◽  
Vol 68 (4) ◽  
pp. 723-735 ◽  
Author(s):  
Hesham Alharby ◽  
Ehab Metwali ◽  
Michael Fuller ◽  
Amal Aldhebiani

The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP) in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen) contents and changes in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl), and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1). The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1) was more effective than a higher concentration (30 mg L-1). This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammad Ali Aazami ◽  
Farzad Rasouli ◽  
Asghar Ebrahimzadeh

Abstract Background Salinity is one of the most challenging abiotic stresses restricting the growth of plants. In vitro screening will increase the efficiency and speed of salinity tolerant genotypes identifications. The response of four tomato cultivars under salinity was analyzed in vitro to evaluate the seedlings growth, biochemical, and gene expression responses as well as the effect of nano zinc and iron on callus induction and plant regeneration. Results The results showed that an increase in salinity stress in the medium decreased the germination percentage, fresh and dry weight of shoot, root length, chlorophyll a, b and carotenoids content, K and Ca content, and on the other hand, Na content was increased. MDA content (‘Nora’, ‘PS-10’, ‘Peto’ and ‘Roma’: 1.71, 1.78, 1.66 and 2.16 folds, respectively), electrolyte leakage (‘PS-10’: 33.33%; ‘Roma’: 56.33%), were increased with salinity of 100 mM compared to control. Proline content was increased in 50 mM NaCl (10.8 fold). The most activity of antioxidant enzymes including CAT, SOD, APX, GPX, and GR was observed in the ‘PS-10’ cultivar, and the lowest activity of these enzymes was observed in ‘Roma’ under salinity stress. The AsA and GSH were decreased and DHA and GSSG were increased with the increased intensity of salinity. The relative expression of SOD, APX, and GR genes varied in different cultivars at different salinity concentrations. The most percentage of callus induction was observed with applying iron oxide nanoparticles, and the most regeneration rate was recorded using zinc oxide nanoparticles. Conclusion The results showed that salt-tolerant cultivars such as ‘PS-10’ with better osmotic adjustment, are suitable candidates for the future production and breeding programs. The use of nutrient nanoparticles under salinity stress for different tomato cultivars increased their performance.


2017 ◽  
Vol 866 ◽  
pp. 25-28
Author(s):  
Chonnikarn Khunchuay ◽  
Kanokporn Sompornpailin

Zinc is an essential micronutrient element for plant. Nowadays, Zinc oxide nanoparticles (ZnO NPs) are widely used and have been shown adverse effects to plant physiology. The optimal concentration of ZnO NPs added in plant regeneration medium (PRM) is studied in this experiment. Six-weeks old calli induced from the aseptic axillary buds of vetiver grass were cultured in PRM with various concentrations of ZnO NPs (5, 10, 20, 40 mgL-1). PRM containing 5, 10 mgL-1 ZnO NPs showed the highest percentage of plant regeneration frequency (95%) but did not have a statistic difference with other treatments. However, the averages of shoot length regenerated under both concentrations were 1.32-1.33 cm. These averages of shoot length had statistically different from averages of shoot length of the others. Moreover, calli regenerated under PRM containing 5 mgL-1 ZnO NPs condition showed the highest average number of shoots per callus (9.75 shoots) with a statistic difference. ZnO NPs at 20-40 mgL-1 in the PRM did not enhance the percentage of plant regeneration, but retarded calli development and shoot elongation. The optimal concentration of ZnO NPs in PRM has positive effects on regeneration and development of vetiver grass under tissue culture condition.


2020 ◽  
Author(s):  
Saima Shafique ◽  
Nyla Jabeen ◽  
Khawaja Shafique Ahmad ◽  
Samra Irum ◽  
Sadaf Anwaar ◽  
...  

AbstractThe current study was focused on the usage of bio synthesized zinc oxide nanoparticles to increase the tissue culture efficiency of important forage grass Panicum virgatum. Zinc being a micronutrient enhanced the callogenesis and regeneration efficiency of Panicum virgatum at different concentrations. Here, we synthesized zinc oxide nanoparticles through Cymbopogon citratus leaves extract to evaluate the influence of zinc oxide nanoparticles on the quality of plant regeneration in switchgrass. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) validate phase purity of green synthesize Zinc oxide nanoparticles whereas, electron microscopy (SEM) has illustrated the average size of particle 50±4 nm with hexagonal rod like shape. Energy dispersive Xray (EDS) spectra depict major peaks of Zn (92.68%) while minor peaks refer to Oxygen (7.32%). ZnO NPs demonstrate the incredibly promising results against callogenesis. Biosynthesized ZnO NPs at optimum concentration showed very promising effect on plant regeneration ability. Both the explants, seeds and nodes used in study showed dose dependent response and upon high doses exceeding 40 mg/L the results were recorded negative, whereas at 30 mg/L both explants demonstrate 70 % and 76 % regeneration frequency. The results conclude that zinc oxide nanoparticles enhance plant growth and development. Being one of the essential plant nutrients, ZnO has greatly tailored the nutritive properties at nano-scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shemawar ◽  
Abid Mahmood ◽  
Sabir Hussain ◽  
Faisal Mahmood ◽  
Muhammad Iqbal ◽  
...  

AbstractGiven the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg−1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg−1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg−1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg−1 soil induced 166 to 207%, while 1000 mg nZnO kg−1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg−1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg−1 concentration of nZnO in it.


Metallomics ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 1584-1594 ◽  
Author(s):  
Ramesh Raliya ◽  
Remya Nair ◽  
Sanmathi Chavalmane ◽  
Wei-Ning Wang ◽  
Pratim Biswas

Nanonutrient for enhanced crop production and increased solar light absorption.


Author(s):  
Hisham A. Elshoky ◽  
Ekaterina Yotsova ◽  
Mohamed A. Farghali ◽  
Khaled Y. Farroh ◽  
Kh El-Sayed ◽  
...  

2014 ◽  
Vol 29 (10) ◽  
pp. 1039
Author(s):  
TAN Man-Lin ◽  
WANG Yan-Tao ◽  
ZHANG Wei-Li ◽  
FU Dong-Ju ◽  
LI Dong-Shuang ◽  
...  

Author(s):  
Hams H. H. Alfattli ◽  
Ghufran Zuhair Jiber ◽  
Ghaidaa Gatea Abbass

This study which designed to evaluate the inhibitory effect of Ethanolic extract of (Quercusrobur) and Zinc oxide nanoparticles on the growth of one genus of enterobacteriacae (Salmonella). In vitro. For this purpose graduate concentrates for plant extract (50, 100, 200, 400 )mg/ml which prepared and compared with Zinc oxide nanoparticles of different concentration (2, 1, 0.5, 0.25) μg/ml,and examined. The result showed that the studied medicinal plant has antibacterial activity against this bacteria which used. The result showed that the plant has good activity in decrease the growth of this bacteria. The results of the study also showed that the nano-ZnO has very effective antibacterial action against the studied bacteria which was Salmonella,nanoparticles concentrations lead to increasing in the inhibition zones of tested bacterial growth. We also study the effect of three antibiotics Lomefloxacin (LOM), Ciprofloxacin (SIP) and Rifampin (RA) and the result showed,in a comparison within the tested bacteria,Salmonella had a significant inhibition increase in Lomefloxacin ; the ciprofloxacin showed effect on tested bacteria. However,Rifampin does not show any effect on tested bacteria.


Sign in / Sign up

Export Citation Format

Share Document