scholarly journals Circular economy in apple processing industry: Biodiesel production from waste apple seeds

Author(s):  
Marija Tasic ◽  
Miona Stankovic ◽  
Milan Kostic ◽  
Olivera Stamenkovic ◽  
Vlada Veljkovic

Apple pomace is a solid waste derived from the apple processing industry. To foster sustainability, the apple processing industry must implement the circular economy model of biorefinery and treat apple pomace as a valuable source of apple seed oil. The first time, this study dealt with the design, economic, and potential environmental impact assessment of biodiesel production using apple pomace as a source of apple seed oil. An Aspen Plus? and WAR? software were used to evaluate the designed biodiesel production. Supercritical CO2 extraction and methanolysis of apple seed oil, methanol recovery, and biodiesel separation were the main production steps. The production facility was assumed to process 24 tons of apple seeds daily. The total capital and production costs were 1.26 US$ million and 2.82 US$ million, respectively. If revenues from selling apple seed meal as cattle feed were included, a biodiesel price could be 0.39 US$/kg. The process was environmentally friendly when apple seed meal was not treated as waste.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Siddalingappa R. Hotti ◽  
Omprakash D. Hebbal

This paper presents the production of biodiesel from nonedible, renewable sugar apple seed oil and its characterization. The studies were carried out on transesterification of oil with methanol and sodium hydroxide as catalyst for the production of biodiesel. The process parameters such as catalyst concentration, reaction time, and reaction temperature were optimized for the production of sugar apple biodiesel (SABD). The biodiesel yield of 95.15% was noticed at optimal process parameters. The fuel properties of biodiesel produced were found to be close to that of diesel fuel and also they meet the specifications of ASTM standards.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7148
Author(s):  
Ayesha Mushtaq ◽  
Muhammad Asif Hanif ◽  
Muhammad Zahid ◽  
Umer Rashid ◽  
Zahid Mushtaq ◽  
...  

Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, poor low temperature operability, variability of fuel quality from different feedstocks, and low storage stability negatively impact more widespread adoption. In order to reduce production costs, inexpensive inedible oilseed alternatives are needed for biodiesel production. This study utilized inedible tamarind (Tamarind indica) seed oil as an alternative biodiesel feedstock, which contained linoleic (31.8%), oleic (17.1%), and lauric (12.0%) acids as the primary fatty acids. A simple and cost-effective high vacuum fractional distillation (HVFD) methodology was used to separate the oil into three fractions (F1, F2, and F3). Subsequent transesterification utilizing basic, acidic, and enzymatic catalysis produced biodiesel of consistent quality and overcame the problem of low temperature biodiesel performance. The most desirable biodiesel with regard to low temperature operability was produced from fractions F2 and F3, which were enriched in unsaturated fatty acids relative to tamarind seed oil. Other properties such as density and cetane number were within the limits specified in the American and European biodiesel standards.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4290 ◽  
Author(s):  
Inam Ullah Khan ◽  
Zhenhua Yan ◽  
Jun Chen

Production of biodiesel from non-edible oils is one of the effective methods to reduce production costs and alleviate the obstacle of traditional raw material supply. Rhus typhina L. (RT) is a promising non-edible plant because it grows fast and has abundant seeds. But previously reported oil content of RT was only 9.7% and 12%. Further research into improving the biodiesel production of RT seed oil is urgently needed. Here we obtained the biodiesel production of RT with a maximum oil content of 22% with a low free fatty acid content of 1.0%. The fatty acid methyl ester (FAMEs) of the RT seed oil was produced by a standard optimized protocol use KOH as a catalyst with the highest yield of 93.4% (w/w). The quality and purity of RT FAMEs, as well as the physio-chemical characterizations of the biodiesel products, were investigated and compared with the international standard of ASTM D6751 and EN 14214. The values of fuel properties are comparable with mineral diesel and environmentally friendly. Overall, the proposed RT seed oil could be a potential source of raw materials for producing high-quality biodiesel after the optimization and transesterification.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


2019 ◽  
Vol 12 (8) ◽  
pp. 2028-2036 ◽  
Author(s):  
Chanatip Samart ◽  
Surachai Karnjanakom ◽  
Chaiyan Chaiya ◽  
Prasert Reubroycharoen ◽  
Ruengwit Sawangkeaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document