scholarly journals An overview of on-chip buses

2006 ◽  
Vol 19 (3) ◽  
pp. 405-428 ◽  
Author(s):  
Milica Mitic ◽  
Mile Stojcev

The electronics industry has entered the era of multi-million-gate chips, and there Xs no turning back. This technology promises new levels of integration on a single chip, called the System-on-a-Chip (SoC) design, but also presents significant challenges to the chip designer. Processing cores on a single chip, may number well into the high tens within the next decade, given the current rate of advancements, [1]. Interconnection networks in such an environment are, therefore, becoming more and more important [2]. Currently on-chip interconnection networks are mostly implemented using buses. For SoC applications, design reuse becomes easier if standard internal connection buses are used for interconnecting components of the design. Design teams developing modules intended for future reuse can design interfaces for the standard bus around their particular modules. This allows future designers to slot the reuse module into their new design simply, which is also based around the same standard bus [3]. In this paper we give an overview of the more popular on-chip bus-based interconnection networks such as AMBA, Avalon CoreConnect, STBus, Wishbone, etc. The main characteristics of the considered buses in respect to topology, arbitration method, bus-width, and types of data transfers are discussed.

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
D. Y. C. Lie

RFIC integration has seen dramatic progress since the early 1990s. For example, Si-based single-chip products for GSM, WLAN, Bluetooth, and DECT applications have become commercially available. However, RF power amplifiers (PAs) and switches tend to remain off-chip in the context of single-chip CMOS/BiCMOS transceiver ICs for handset applications. More recently, several WLAN/Bluetooth vendors have successfully integrated less demanding PAs onto the transceivers. This paper will focus on single-chip RF-system-on-a-chip (i.e., “RF-SoC”) implementations that include a high-power PA. An analysis of all tradeoffs inherent to integrating higher power PAs is provided. The analysis includes the development cost, time-to-market, power efficiency, yield, reliability, and performance issues. Recent design trends on highly integrated CMOS WiFi transceivers in the literature will be briefly reviewed with emphasis on the RF-SoC product design tradeoffs impacted by the choice between integrated versus external PAs.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 183
Author(s):  
Jose Ricardo Gomez-Rodriguez ◽  
Remberto Sandoval-Arechiga ◽  
Salvador Ibarra-Delgado ◽  
Viktor Ivan Rodriguez-Abdala ◽  
Jose Luis Vazquez-Avila ◽  
...  

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.


2010 ◽  
Vol 7 (1) ◽  
pp. 35-43 ◽  
Author(s):  
John H. Lau

Moore's law has been the most powerful driver for the development of the microelectronic industry. This law is grounded in lithography scaling and integration (in 2D) of all functions on a single chip, perhaps through system-on-chip (SoC). On the other hand, the integration of all these functions can be achieved through system-in-package (SiP) or, ultimately, 3D IC integration. However, there are many critical issues for 3D IC integration. In this study, some of the critical issues will be discussed and some potential solutions or research problems will be proposed.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1076 ◽  
Author(s):  
Zulqar Nain ◽  
Rashid Ali ◽  
Sheraz Anjum ◽  
Muhammad Khalil Afzal ◽  
Sung Won Kim

Scalability is a significant issue in system-on-a-chip architectures because of the rapid increase in numerous on-chip resources. Moreover, hybrid processing elements demand diverse communication requirements, which system-on-a-chip architectures are unable to handle gracefully. Network-on-a-chip architectures have been proposed to address the scalability, contention, reusability, and congestion-related problems of current system-on-a-chip architectures. The reliability appears to be a challenging aspect of network-on-a-chip architectures because of the physical faults introduced in post-manufacturing processes. Therefore, to overcome such failures in network-on-a-chip architectures, fault-tolerant routing is critical. In this article, a network adaptive fault-tolerant routing algorithm is proposed, where the proposed algorithm enhances an efficient dynamic and adaptive routing algorithm. The proposed algorithm avoids livelocks because of its ability to select an alternate outport. It also manages to bypass congested regions of the network and balances the traffic load between outports that have an equal number of hop counts to its destination. Simulation results verified that in a fault-free scenario, the proposed solution outperformed a fault-tolerant XY by achieving a lower latency. At the same time, it attained a higher flit delivery ratio compared to the efficient dynamic and adaptive routing algorithm. Meanwhile, in the situation of a faulty network, the proposed algorithm could reach a higher flit delivery ratio of up to 18% while still consuming less power compared to the efficient dynamic and adaptive routing algorithm.


Sign in / Sign up

Export Citation Format

Share Document