scholarly journals Dual wideband and high gain microstrip antenna for wireless system

2021 ◽  
Vol 34 (3) ◽  
pp. 435-444
Author(s):  
Biplab Bag ◽  
Sushanta Biswas ◽  
Partha Sarkar

In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ? -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and Xband. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them.

2017 ◽  
Vol 10 (4) ◽  
pp. 453-459
Author(s):  
Haixiong Li ◽  
Bozhang Lan ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a high gain broadband low profile microstrip antenna with the dual-layered substrate and four parasitic metal elements is presented. The proposed microstrip antenna is mainly composed of four parts: four circular parasitic metal patches with dual arced breaches, a rectangular metal patch sandwiched between substrates, a square ground plane, and two-square substrates. The circular parasitic elements are the main radiation structure and determine the characteristics of the proposed antenna are closely related to the parasitic elements. The proposed antenna has been fabricated for experimental measurement. The reflection coefficient, radiation pattern, radiation efficiency, and gain have been studied in detail. The simulated and measured impedance bandwidth is 27.0% (3.30–4.33 GHz), the maximum realized peak gain reaches up to 6.52 dBi at the frequency of 3.65 GHz. The radiation pattern has a single peak which is perpendicular to the surface of the substrate. The proposed antenna is suitable to be applied in the 5G mobile or WiMAX wireless communication. Dual antenna with a pair of parasitic elements has been investigated numerically to explain the principle of the proposed antenna.


2016 ◽  
Vol 9 (5) ◽  
pp. 1179-1184 ◽  
Author(s):  
Kalyan Mondal ◽  
Partha Pratim Sarkar

In this work, microstrip antenna with W- and V-shaped radiating patches have been proposed. Here square- and circular-shaped modified ground planes have been designed by poly tetra fluoro ethylene (PTFE) substrate with dielectric constant 2.4. Broadband with high gain is obtained by optimum selection of radiating patch with modified ground plane. The ground planes are modified by loading a U-shaped slot. The simulated and measured results are compared. Considering −10 dB impedance bandwidth maximum frequency band of 6.97 GHz (3.04–10.01 GHz) with percentage bandwidth of 106.8% is achieved. The proposed antenna exhibits maximum peak gain of 5.1 dBi. The simulation and measurement have been done by Ansoft designer software and vector network analyzer.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 41-51
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Binod Kumar Kanaujia

AbstractIn this article, a new structure comprising of a novel compact slot loaded polarization dependent Electromagnetic Band Gap structure (SLPDEBG), which enhances the performance of circularly polarized rotated square patch antenna by placing SLPDEBG unit cells around it, has been designed. The proposed antenna, having dimensions 0.640 λo x 0.640 λ x 0.0128 λo (λo stands for the free space wavelength at 2.39 GHz), shows that the measured impedance bandwidth and AR bandwidth is 120 MHz and 50 MHz, respectively, with a peak gain of 3.52 dB. Some prominent features of the proposed structure are: front to back ratio of 64, 3 db, beamwidth of 92° at xz-plane and 74° at yz-plane. This prototype antenna finds its application in wireless communication of ISM band. Good performance of the proposed antenna is verified by the close agreement between the simulated and measured results.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2018 ◽  
Vol 7 (2) ◽  
pp. 41-47 ◽  
Author(s):  
S. B. Behera ◽  
D. Barad ◽  
S. Behera

In this study, a triple-band suspended microstrip antenna with symmetrical U-slots is proposed for modern wireless communication systems. The antenna is specifically designed to acquire application in WLAN and WiMAX communication. Symmetrical U-slots in the radiator patch increase the number of resonances and improve the gain response. An appropriate air height was maintained between the ground plane and the radiator patch layer for improving bandwidth operation. The impedance characteristics of the antenna are enhanced using probe feeding techniques. The proposed compact antenna is designed on a single dielectric substrate of (30×25×1.56) mm3 . Parametric analysis of the proposed structure has been realized using IE3D software. This prototype exhibits maximum impedance bandwidth of 750 MHz and gain response of 7.28 dBi. The performance of the structure at three resonating bands i.e., at 3.3 GHz, 3.78 GHz and 5.3 GHz facilitate it to be applicable for WLAN/WiMAX systems.


2017 ◽  
Vol 6 (4) ◽  
pp. 15-21 ◽  
Author(s):  
K. G. Jangid ◽  
P. K. Jain ◽  
B. R. Sharma ◽  
V. K. Saxena ◽  
V. S. Kulhar ◽  
...  

This paper exhibits the design and performance of a coplanar waveguide (CPW) fed triple notched band ultra-wide band (UWB) antenna. Proposed prototype has two U-shaped slots on the patch and an inverted U slot in feed line with a metal reflector beneath the radiating element. Proposed structure renders wider impedance bandwidth extended between frequencies 2.71GHz to 12.92 GHz for VSWR < 2 with three rejection bands in the frequency ranges 3.456 to 3.988 GHz (WI-MAX IEEE 802.16), 5.27 to 6.032 GHz (WLAN IEEE 802.11 a/h/j/n) and 7.88 to 8.65 GHz (X-band down link satellite system) for VSWR > 2. The utmost simulated gain of proposed antenna with reflector is close to 9.9dBi at 7.4GHz. A sharp reduction observed in the efficiency values of the proposed structure at stop bands. Perhaps, this structure proved as a useful tool for various applications in modern communication systems including UWB.


2021 ◽  
Vol 336 ◽  
pp. 01005
Author(s):  
Darong Gao

In this paper, A lens antenna with high gain is proposed. The antenna is composed of the microstrip antenna and the hemisphere dielectric lens, and the lens is loaded on the top. The polyethylene is used to fabricated the hemisphere dielectric lens. The antenna has dimensions of 47.58 mm × 47.58 mm × 24.79 mm, which is corresponding to the electrical size of 1.586λ0×1.586λ0×0.826λ0, where λ0 is the free-space wavelength at 10GHz. The impedance bandwidth (return loss<-10dB) is 12.7%(9.24 GHz-10.51 GHz), and the peak gain is 9.06 dBi. The hemisphere dielectric lens can improve the gain of the microstrip antenna. The proposed lens antenna is suitable for wireless communications systems.


2021 ◽  
Vol 21 (5) ◽  
pp. 406-416
Author(s):  
Ch. Ramakrishna ◽  
G. A. E. Satish Kumar ◽  
P. Chandra Sekhar Reddy

A printed quadruple band-notched ultra-wideband (UWB) antenna characteristic is presented. The designed UWB antenna has a size of 32 mm × 30 mm × 1.6 mm and covers an impedance bandwidth off 2.9–14.5 GHz for the entire frequency band. The entire frequency band maintains voltage standing wave ratio (VSWR) <2, except at WiMAX (3.1–3.6 GHz), WLAN (4.92–6.12 GHz), downlink of X-band for satellite communication systems (7.5–8.4 GHz), and X-band (10.2–11 GHz). By inserting a pair of L-shaped slots into the radiating element, a H-shaped resonator and rectangular split-ring resonators are closely arranged to the microstrip feed-line, alongside the measured impedance bandwidth of 129%. The fabricated antenna radiation pattern and return loss is presented.


Sign in / Sign up

Export Citation Format

Share Document