scholarly journals Plant AP2/ERF transcription factors

Genetika ◽  
2003 ◽  
Vol 35 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Abdelaty Saleh ◽  
Montserrat Pagés

Transcription factors (TFs) play important roles in plant development and its response to the biotic and abiotic stresses. AP2/ERF transcription factors family is unique to plants and a conserved AP2/ERF domain of about 60 amino acids characterized these transcription factors. AP2/ERF genes have been shown to regulate developmental processes and the response of plants to various types of biotic and environmental stress. Here, we summarize the current knowledge of AP2/ERF plant transcription factor family.

2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaolong Lv ◽  
Shanrong Lan ◽  
Kateta Malangisha Guy ◽  
Jinghua Yang ◽  
Mingfang Zhang ◽  
...  

2021 ◽  
Vol 5 ◽  
Author(s):  
Zixin Zhang ◽  
Yang Zhang

Abstract Melatonin is an endogenous micromolecular compound of indoleamine with multiple physiological functions in various organisms. In plants, melatonin is involved in growth and development, as well as in responses to biotic and abiotic stresses. Furthermore, melatonin functions in phytohormone-mediated signal transduction pathways. There are multiple melatonin biosynthesis pathways, and the melatonin content in plants is greatly affected by intrinsic genetic characteristics and external environmental factors. Although melatonin biosynthesis has been extensively studied in model plants, it remains uncharacterized in most plants. This article focuses on current knowledge on the biosynthesis, regulation and application of melatonin, particularly for fruit quality and preservation. In addition, it highlights the links between melatonin and other hormones, as well as future research directions.


2010 ◽  
Vol 30 (13) ◽  
pp. 3299-3309 ◽  
Author(s):  
Thorsten Pfirrmann ◽  
Stijn Heessen ◽  
Deike J. Omnus ◽  
Claes Andréasson ◽  
Per O. Ljungdahl

ABSTRACT Extracellular amino acids induce the yeast SPS sensor to endoproteolytically cleave transcription factors Stp1 and Stp2 in a process termed receptor-activated proteolysis (RAP). Ssy5, the activating endoprotease, is synthesized with a large N-terminal prodomain and a C-terminal chymotrypsin-like catalytic (Cat) domain. During biogenesis, Ssy5 cleaves itself and the prodomain and Cat domain remain associated, forming an inactive primed protease. Here we show that the prodomain is a potent inhibitor of Cat domain activity and that its inactivation is a requisite for RAP. Accordingly, amino acid-induced signals trigger proteasome-dependent degradation of the prodomain. A mutation that stabilizes the prodomain prevents Stp1 processing, whereas destabilizing mutations lead to constitutive RAP-independent Stp1 processing. We fused a conditional degron to the prodomain to synthetically reprogram the amino acid-responsive SPS signaling pathway, placing it under temperature control. Our results define a regulatory mechanism that is novel for eukaryotic proteases functioning within cells.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1727-1739 ◽  
Author(s):  
Fadi Abdel-Sater ◽  
Ismaïl Iraqui ◽  
Antonio Urrestarazu ◽  
Bruno André

Abstract Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1—but not Stp2—plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene’s upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UASAA element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UASAA itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5′-GATA-3′ sequences, to amplify the positive effect of UASAA. Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Fan ◽  
Dili Lai ◽  
Hao Yang ◽  
Guoxing Xue ◽  
Ailing He ◽  
...  

Abstract Background Members of the basic helix-loop-helix (bHLH) transcription factor family perform indispensable functions in various biological processes, such as plant growth, seed maturation, and abiotic stress responses. However, the bHLH family in foxtail millet (Setaria italica), an important food and feed crop, has not been thoroughly studied. Results In this study, 187 bHLH genes of foxtail millet (SibHLHs) were identified and renamed according to the chromosomal distribution of the SibHLH genes. Based on the number of conserved domains and gene structure, the SibHLH genes were divided into 21 subfamilies and two orphan genes via phylogenetic tree analysis. According to the phylogenetic tree, the subfamilies 15 and 18 may have experienced stronger expansion in the process of evolution. Then, the motif compositions, gene structures, chromosomal spread, and gene duplication events were discussed in detail. A total of sixteen tandem repeat events and thirty-eight pairs of segment duplications were identified in bHLH family of foxtail millet. To further investigate the evolutionary relationship in the SibHLH family, we constructed the comparative syntenic maps of foxtail millet associated with representative monocotyledons and dicotyledons species. Finally, the gene expression response characteristics of 15 typical SibHLH genes in different tissues and fruit development stages, and eight different abiotic stresses were analysed. The results showed that there were significant differences in the transcription levels of some SibHLH members in different tissues and fruit development stages, and different abiotic stresses, implying that SibHLH members might have different physiological functions. Conclusions In this study, we identified 187 SibHLH genes in foxtail millet and further analysed the evolution and expression patterns of the encoded proteins. The findings provide a comprehensive understanding of the bHLH family in foxtail millet, which will inform further studies on the functional characteristics of SibHLH genes.


Sign in / Sign up

Export Citation Format

Share Document