scholarly journals Composition and antimicrobial activity of the essential oil from Galatella linosyris (L.) Rchb. f. (Asteraceae)

2012 ◽  
Vol 77 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Dejan Godjevac ◽  
Ljubodrag Vujisic ◽  
Ivan Vuckovic ◽  
Vlatka Vajs ◽  
Marina Sokovic ◽  
...  

The investigation of chemical composition and antimicrobial activity of the essential oil of Galatella linosyris was presented. Chemical analysis (GC/MS, NMR) showed that sabinene (40%), ?-pinene (35.5%), ?-pinene (4.5%), limonene (4%), ?-muurolene (4%), and E-Caryophyllene (3.3%) were dominant components in this oil. The microdilution assays was used to evaluate minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC, MFC). G. linosyris essential oil exhibited better antifungal than antibacterial activity.

2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900
Author(s):  
Camila Hernandes ◽  
Silvia H. Taleb-Contini ◽  
Ana Carolina D. Bartolomeu ◽  
Bianca W. Bertoni ◽  
Suzelei C. França ◽  
...  

Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.


2008 ◽  
Vol 25 (No. 2) ◽  
pp. 81-89 ◽  
Author(s):  
A. Adiguzel ◽  
H. Ozer ◽  
H. Kilic ◽  
B. Cetin

The present work reports the <i>in vitro</i> antimicrobial activities of the essential oil and methanol extract from <i>Satureja hortensis</i> as well as the content of its essential oil. The chemical composition of hydrodistilled essential oil of Satureja hortensis was analysed by means of GC-MS. Thirty constituents were identified. The main constituents of the oil were thymol (40.54%), &gamma;-terpinene (18.56%), carvacrol (13.98%), and <i>p</i>-cymene (8.97). The essential oil of <i>Satureja hortensis</i> exhibited the activity against 25 bacteria, 8 fungi, and a yeast, <i>C. albicans</i>; exerting the Minimum Inhibitory Concentration values (MIC) ranging from 15.62 to 250 &micro;l/ml. Similarly, methanol extract of the plant also showed antimicrobial activity.


Author(s):  
Dalva Paulus ◽  
Luana Aline Luchesi ◽  
Cleverson Busso ◽  
Marcela Tostes Frata ◽  
Paula Juliane Barbosa de Oliveira

Aims: The biological properties of essential oils represent possible therapeutic alternatives, with antimicrobial and antioxidant activities, and application in many areas of the industry. The objective was to determine the yield, chemical composition, antibacterial and antioxidant activities of the essential oils of Lavandula angustifolia, Pogostemon cablin, Rosmarinus officinalis, and Thymus vulgaris against Staphylococcus aureus, Salmonella enteritidis, Escherichia coli and Pseudomonas aeruginosa. Place and Duration of Study: The experiment was conducted at the microbiology laboratory of the Federal University of Technology - Paraná, Brazil, in the period between June 2016 to May 2017. Methodology: The essential oils were analyzed by gas chromatography coupled to mass spectrometry. The antibacterial activity was determined by microdilution in broth, showing minimum inhibitory concentration and minimum bactericidal concentration. The antioxidant activity was evaluated by scavenging of 2,2-diphenyl-1-picryl hydrazyl radical (DPPH). Results: The average yields of essential oils from L. angustifolia, P. cablin, R. officinalis,and  T. vulgaris were (%) 0.85; 2.0; 1.20, and 1.19, respectively. The major components of lavender essential oil were linalyl acetate (40.1%) and linalool (35.2%); for P. cablin - patchoulol (31.5%), seichelene (13.6%) and α-bulnesene (15.6%); for rosemary - camphor (32.5%), 1.8-cineole (13.6%) and α-pinene (9.8); for T. vulgaris - thymol (47%), o-scimene (21.6%), and carvacrol (11.4%). Thyme oil showed the best results for antibacterial activity, and low values (0.195 µL mL-1) of minimum inhibitory concentration were needed to inhibit S. aureus and S. enteritidis, and for L. angustifolia, P. cablin, and R. officinalis higher concentrations of essential oil were required. The essential oils of P. cablin and T. vulgaris had the strongest antioxidant properties (12.08 and 10.2 µmol trolox mL−1). Conclusion: The essential oils evaluated have an inhibitory effect on the microorganisms under study and also interesting antioxidant activity, which could be used by medicine to control bacterial infections, with potential application as natural food preservatives and as nutraceuticals.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Nhan Trong Le ◽  
Duc Viet Ho ◽  
Tuan Quoc Doan ◽  
Anh Tuan Le ◽  
Ain Raal ◽  
...  

The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene (15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.


2007 ◽  
Vol 2 (5) ◽  
pp. 1934578X0700200
Author(s):  
Fadwa El Hanbali ◽  
Ahmed El Hakmaoui ◽  
Fouad Mellouki ◽  
Lahoussine El Rhaffari ◽  
Mohamed Akssira

The essential oil of the aerial parts of Anvillea radiata Coss. & Dur. was examined by GC-MS. Twenty-nine constituents were identified, representing 88.8% of the total. 6-Oxocyclonerolidol (66.6%) and 6-hydroxycyclonerolidol (11.4%) were found to be the major components. The disc diffusion method, used for antimicrobial activity testing, showed that the essential oil had a significant antibacterial activity against all tested microorganisms.


2020 ◽  
Vol 15 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Jalil Kardan-Yamchi ◽  
Mohaddese Mahboubi ◽  
Hossein Kazemian ◽  
Gholamreza Hamzelou ◽  
Mohammad M. Feizabadi

Background: Microbial resistance to antibiotics and their adverse effects related to these antibiotics are a matter of global public health in the 21th century. The emergence of drug-resistant strains, has gained the interest of the scientists to discover new antimicrobial agents from the essential oil of medicinal plants. Methods: Anti-mycobacterial effects of Trachyspermum copticum and Pelargonium graveolens essential oils were determined against multi-drug resistant clinical strains of Mycobacterium tuberculosis, Mycobacterium kansasii, Mycobacterium fortuitum and standard strain of Mycobacterium tuberculosis H37Rv by a Broth micro-dilution method. Pelargonium graveolens plant named Narmada was discovered by Kulkarni R.N et al. (Patent ID, USPP12425P2) and a formulation comprising thymol obtained from Trachyspermum is useful in the treatment of drug-resistant bacterial infections (Patent ID, US6824795B2). The chemical composition of hydro-distilled essential oils was determined by GC and GC-MS. Results: Minimum Inhibitory Concentration (MIC) values for T. copticum essential oil against tested isolates were ranged from 19.5 µg/mL to 78 µg/mL. The least minimum inhibitory concentration of P. graveolens extract against M. Kansasii and MDR-TB was 78 µg/ml. Conclusion: The results of the present research introduced T. copticum and P. graveolens essential oils as a remarkable natural anti-mycobacterial agent, but more pharmacological studies are required to evaluate their efficacy in animal models.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2019 ◽  
Vol 84 (12) ◽  
pp. 1355-1365 ◽  
Author(s):  
Jovana Stankovic ◽  
Miroslav Novakovic ◽  
Vele Tesevic ◽  
Ana Ciric ◽  
Marina Sokovic ◽  
...  

This study was performed to determine the main antibacterial compounds of the essential oil (??) of saltmarsh plant Artemisia santonicum (Asteraceae). The combination of HPTLC and direct bioautography was used for the activity guided isolation of isogeranic acid as the main antibacterial constituent with remarkable antimicrobial activity, although it was the minor component of the EO, present only in 0.2 %, as calculated from GC/FID. Its structure was determined by 1D- and 2D-NMR and GC?MS techniques. Antibacterial activity of isogeranic acid against all tested bacteria was significantly higher than EO and even than both controls streptomycin and ampicillin. In further investigation of antibiofilm and antiquorum sensing activity EO exhibited the best inhibition of the biofilm formation at 1/8 minimal inhibitory concentration (MIC) and isogeranic acid at 1/2 MIC. Both EO and isogeranic acid possessed pyocyanin inhibitory activity showing the reduction of pigment at 60.6 and 62.8 %, respectively, at 1/2 MIC concentrations.


2021 ◽  
Vol 20 ◽  
pp. e210219
Author(s):  
Tabata Resque Beckmann Carvalho ◽  
Erich Brito Tanaka ◽  
Amujacy Tavares Vilhena ◽  
Paula Cristina Rodrigues Frade ◽  
Ricardo Roberto de Souza Fonseca ◽  
...  

Aim: This study evaluated the chemical composition of Lippia thymoides (Lt) essential oil and its antimicrobial activity against fungal strains of Candida albicans (Ca) and Gram-negative bacteria Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Methods: Lt essential oil was obtained by hydrodistillation apparatus with a modified Clevenger extension. The chemical analysis was analyzed by gas phase chromatography and mass spectrometry on Shimadzu QP 2010 plus. Sample sensitivity evaluation was performed by ABHb-inoculum and culture plates were developed with triphenyltetrazolium chloride, also Fn and Pi samples analysis were in anaerobic environment and Ca sample analysis was performed in aerobic environment. The minimum inhibitory concentration (CIM) was determinated by microdilution in eppendorfs tubes. Results: The chemical analysis showed that Thymol (59,91%) is the main compound found in Lt essential oil, also other antifungal and antimicrobial agents were present γ-terpinene (8.16%), p-cymene (7.29%) and β-caryophyllene (4.49%), Thymol is a central ingredient of many medicinal plants and has a potent fungicidal, bactericidal and antioxidant activity, it has been previously shown to have anti-inflammatory activity against Periodontal Disease (PD) cause can reduces prostanoids, interleukins, leukotrienes levels in periodontium. CIM result Pi was 6.5 μg/mL, Fn was 1.5 μg/mL and Ca was 0.19 μg/mL. Conclusion: The antimicrobial activity of L. thymoides, through the compound Thymol, has been shown promising potential against gram-negative periodontopathogenic bacteria and fungi whose therapeutic arsenal is still very restricted.


2020 ◽  
pp. 1-6
Author(s):  
Huma Aslam Bhatti ◽  
Aqeel Ahmad ◽  
Fraha Naz Chohan ◽  
Huma Aslam Bhatti ◽  
Sara . ◽  
...  

In our present studies we identify the components of essential oil, crude extracts and fraction of Illicium verum, and evaluation of antibacterial activity. We isolated and identified as 3, 4-dihydroxybenzoic acid (protocatechuic acid) through spectroscopic studies and comparison with the data of the authentic sample [1]. The phase MEA itself was emerged as the active fraction comprising antibacterial, antioxidant and nematocidal constituents, including 3, 4-dihydroxybenzoic acid which also possessed antibacterial, Superb antioxidant and nematocidal activities [1].


Sign in / Sign up

Export Citation Format

Share Document