scholarly journals Treatment of egg processing industry effluent using chitosan as an adsorbent

2014 ◽  
Vol 79 (6) ◽  
pp. 743-757 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar ◽  
Maran Prakash

The objective of this present study is to investigate the efficiency of chitosan as an adsorbent to treat egg processing industry wastewater. Parameters affecting the effluent treatment process such as pH, chitosan dosage, settling time and initial chemical oxygen demand (COD) concentration on the reduction percentage of turbidity, COD and biochemical oxygen demand (BOD) were studied. Optimum condition was found to be pH of 4, chitosan dosage of 1.1 g L-1 and settling time of 40 min respectively. The maximum reduction percentage of turbidity, COD and BOD were found to be 94 %, 88 % and 83 % respectively. The effective adsorption process was confirmed by FT-IR spectra analysis. The experimental data was analyzed by different isotherm and kinetic models. Langmuir isotherm type I model was satisfactorily described the adsorption mechanism and the rate of COD reduction followed the pseudo-first-order kinetic model. A four factor, three levels Box-Behnken response surface design was employed to develop second order polynomial mathematical models from the experimental data.

2021 ◽  
Author(s):  
B.L. Dinesha ◽  
S. Hiregoudar ◽  
U. Nidoni ◽  
K.T. Ramappa ◽  
A.T. Dandekar ◽  
...  

AbstractThe present study emphasised the efficiency of chitosan anchored titanium dioxide nano-adsorbent on dairy industry effluent treatment. Chitosan titanium dioxide nano-adsorbent was synthesised by using chemical precipitation method and characterised for its particle size, surface morphology and texture. A four-factor-three-level Box–Behnken design along with response surface methodology was used to optimise the adsorption process parameters. Linear, two factor interaction, quadratic and cubic model techniques were used to demonstrate the influence of each parameter and their interaction effects on the responses. The quadratic models derived from the experimental data were used to predict the maximum per cent reduction of biological oxygen demand (BOD) and chemical oxygen demand (COD). The optimised treatment combination for maximum per cent reduction in BOD (90.48%) and COD (82.10%) was found to be initial concentration of 100 mg L−1, pH of 7, dosage of 1.25 mg L−1 and contact time of 100 min.


2021 ◽  
pp. 1-47
Author(s):  
Thiago Abrantes Silva ◽  
Jackeline Siqueira de Castro ◽  
Vinicius José Ribeiro ◽  
José Ivo Ribeiro Júnior ◽  
Gabriella Peterlini Tavares ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. 579-584
Author(s):  
K. Girish

Rubber processing industry effluent represents a serious environmental pollution problem especially for underground and surface water. Wastewater collected from rubber processing industry was characterized for their pollution characteristics. Analysis showed that the biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), ammonia and phosphate were high when compared to effluent discharge standard for industrial wastewater. Four bacterial species were isolated from the wastes and were identified as Arthrobacter sp., Bacillus sp., Lactobacillus sp., and Pseudomonas sp. A bacterial consortium was constituted by mixing proportionately these four bacteria and used in effluent aerobic biotreatment. Complex carbon sources such as bagasse, corn-cob, rice straw, wheat bran, molasses, corn steep liquor, were screened for their effect on growth of the consortium constituted. Highest biomass production was in molasses followed by rice straw hydrolysate, wheat bran hydrolysate and bagasse hydrolysate. However, the inoculum grown on rice straw and wheat bran hydrolysate caused maximum degradation in terms of reduction in various parameters such as BOD, COD, TDS, TSS, NH4+ and PO43, about 70 to 80% reduction was observed. From the results of the present study it could be inferred that the constituted consortium could effectively be used for the treatment of effluents from rubber processing industry and rice straw and wheat bran hydrolysate could be used for mass production of effective consortium. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11532Int J Appl Sci Biotechnol, Vol. 2(4): 579-584


Author(s):  
C. Sivapragasam ◽  
V. Aruna Janani ◽  
A. Andappan ◽  
B. Archana ◽  
M. Vasudevan ◽  
...  

Abstract Performance of green treatment systems such as adsorption to treat textile effluents often suffers lack of longevity and efficiency due to the presence of complex compounds of varying reactivity. There is scope for improving the operational efficiency of such processes using real-time monitoring systems. The present study aimed to evaluate the performance of an activated biosorbent prepared from the leaves of Acalypha indica for treating textile industry effluent by simulating process control with real-time monitoring. Batch experiments were performed with synthetic and real-time dye effluents to identify the optimum conditions (pH = 3.0, dosage = 1.0 g/L; time = 1 h) for the highest adsorption capacity (6 mg g−1 and 2 mg g−1). The evaluation of physical parameters suggested best fit for Freundlich isotherm model and pseudo-second-order kinetic model. The LabVIEW-based simulation control system enabled close monitoring of pH and temperature during the process. Based on the inputs, an alteration of initial pH has resulted in substantial reduction in chemical oxygen demand (COD) (73.91%), turbidity (52.43%) and total dissolved solids (TDS) (19.43%). The average incremental increase was highest for COD (45.80 ± 0.06%) compared to TDS (10.13 ± 0.06%) and turbidity (−1.74 ± 0.03%) for varying dosage (3 g to 11 g). The proposed framework for incorporating a process-control-based monitoring system can help to achieve better performance.


2019 ◽  
Vol 80 (12) ◽  
pp. 2310-2319 ◽  
Author(s):  
Prashant Dhanke ◽  
Sameer Wagh ◽  
Abhijeet Patil

Abstract Water generated from the fish processing industry is contaminated with organic matter. This organic matter present in wastewater increases the biochemical oxygen demand (BOD) and chemical oxygen demand (COD). A new technology, hydrodynamic cavitation (HC) is used to deal with this wastewater produced in fish processing plants. The orifice plate is used in the HC reactor to generate a cavitation effect. The intensification of this technique was carried out with the help of hydrogen peroxide (H2O2) and TiO2. The treatment of this wastewater is reported in terms of percent degradation in BOD and COD and in biodegradability index (BI). Operating parameters like inlet pressure, pH, operating temperature and H2O2 doses were used to find the optimum condition. 15 g/L of H2O2 gave 69.5% reduction of COD in the 120 min of treatment that also increases BI value to 0.93 at inlet pressure 8 bar, Plate-5, temperature (30 °C), and pH 4. In the ultrasonic cavitation (UC) reactor, COD reduction is 68.7% without TiO2 and with TiO2 it is 71.2%. Also, this HC and UC reactor reduced CFU count to a great extent at the same operating conditions.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


2018 ◽  
Vol 31 ◽  
pp. 03002 ◽  
Author(s):  
Hadiyanto Hadiyanto

Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.


2021 ◽  
Vol 411 ◽  
pp. 67-78
Author(s):  
Ivy Ai Wei Tan ◽  
J.R. Selvanathan ◽  
M.O. Abdullah ◽  
N. Abdul Wahab ◽  
D. Kanakaraju

Palm oil mill effluent (POME) discharged without treatment into watercourses can pollute the water source. Microbial fuel cell (MFC) has gained high attention as a green technology of converting organic wastewater into bio-energy. As an approach to overcome the limitations of the existing POME treatment methods, air-cathode MFC-Adsorption system is introduced as an innovative technology to treat POME and generate bio-electricity simultaneously. However, the use of conventional MFC with proton exchange membrane in large scale applications is restricted by the high cost and low power generation. Addition of mediator in MFC is essential in order to increase the electron transfer efficiency, hence enhancing the system performance. This study therefore aims to investigate the effect of different type of mediators i.e. congo red (CR), crystal violet (CV) and methylene blue (MB) on the performance of an affordable air-cathode MFC-Adsorption system made from earthen pot with POME as the substrate. The addition of different mediators altered the pH of the MFC-Adsorption system, in which more alkaline system showed better performance. The voltage generated in the system with CR, CV and MB mediator was 120.58 mV, 168.63 mV and 189.25 mV whereas the current generated was 2.41 mA, 3.37 mA and 3.79 mA, respectively. The power density of 290.79 mW/m3, 568.72 mW/m3 and 716.31 mW/m3 was produced in the MFC-Adsorption system with CR, CV and MB mediator, respectively. The highest POME treatment efficiency was achieved in MFC-Adsorption system with MB mediator, which resulted in biochemical oxygen demand, chemical oxygen demand, total suspended solids, turbidity and ammoniacal nitrogen removal of 75.3%, 84.8%, 91.5%, 86.1% and 23.31%, respectively. Overall, the air-cathode MFC-Adsorption system with addition of MB mediator was feasible for POME treatment and simultaneous bio-energy generation.


Sign in / Sign up

Export Citation Format

Share Document