scholarly journals Influence of the precursor chemical composition on heavy metal adsorption properties of hemp (Cannabis Sativa) fibers based biocarbon

2017 ◽  
Vol 82 (12) ◽  
pp. 1417-1431 ◽  
Author(s):  
Marija Vukcevic ◽  
Biljana Pejic ◽  
Ivana Pajic-Lijakovic ◽  
Ana Kalijadis ◽  
Mirjana Kostic ◽  
...  

Waste hemp (Cannabis sativa) fibers were used as sustainable and renewable raw materials for production of low-cost biocarbon sorbent for heavy metals removal. Carbon precursors of different chemical composition were obtained by oxidative and alkaline treatments of hemp fibers. Influence of lignocellulosic precursor chemical composition on hemp fibers-based biocarbon (HFB) characteristics was examined by BET surface area measurement, scanning electron microscopy and mass titration. It was found that lignin content and polymorphic transformation of cellulose increase the SBET of microporous HFBs, while hemicelluloses induce more homogeneous distribution of adsorption active sites. Heavy metal ions adsorption onto HFBs is primarily influenced by the amount of surface oxygen groups, while specific surface area plays a secondary role. Equilibrium data obtained for lead ions adsorption were analyzed by different nonlinear adsorption isotherms, and the best fitting model was chosen using standard deviation and Akaike information criterion (AICC). The maximum adsorption capacities of HFBs ranged from 103.1 to 116.3 mg Pb/g. Thermodynamic parameters showed that Pb2+ adsorption onto HFBs is a spontaneous and complex endothermic process, suggesting the coexistence of physisorption and chemisorption mechanisms.

2020 ◽  
Vol 236 ◽  
pp. 116000 ◽  
Author(s):  
Biljana M. Pejić ◽  
Ana D. Kramar ◽  
Bratislav M. Obradović ◽  
Milorad M. Kuraica ◽  
Andrijana A. Žekić ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 448-451 ◽  
Author(s):  
Boyan Yuan ◽  
Mei Yang ◽  
Hongmin Zhu

Titanium nitride nanopowders were synthesized through a chemical reduction of titanium tetrachloride by sodium in liquid ammonia. The products of the reaction were the mixture of sodium chloride and titanium nitride nanopowders. The mixture was then separated by ammonia extraction. The nanopowders were heated under vacuum up to 1200 °C and were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET) surface area measurement, and chemical analysis. The results show that the product is nanocrystalline cubic phase TiN with Ti/N atomic ratio performed 1:1, and the surface area is from 20 to 50 m2 ·g−1 depending on the heating temperature. The particle sizes estimated by the TEM analysis correspond well with the results of the surface area measurements. The XRD pattern indicates that the crystal size grows with an increase in heating temperature.


2017 ◽  
Vol 11 (5) ◽  
pp. 47 ◽  
Author(s):  
Heman A. Smail ◽  
Kafia M. Shareef ◽  
Zainab H. Ramli

The adsorption of lead (Pb II) ion on different types of synthesized zeolite was investigated. The BET surface area, total pore volume & average pore size distribution of these synthesized zeolites were determined by adsorption isotherms for N2, the surface area & total pore volume of their sources were found by adsorption isothermN2.The adsorption equilibrium was measured after 24h at room temperature (RT) & concentration 10mg.L-1 of Pb (II) was used. The adsorption of heavy metal Pb (II) on four different prepared zeolites (LTA from Montmorillonite clay, FAU(Y)-B.H (G2) from Barley husk, Mordenite (G1) from Chert rock, FAU(X)-S.C (G3) from shale clay & modified Shale clay by oxalic acid (N1) & sodium hydroxide (N2)), were compared with the adsorption of their sources by using static batch experimental method. The major factors affecting the heavy metal ion sorption on different synthesized zeolites & their sources were investigated. The adsorption equilibrium capacity (Qm) of Pb (II) ion for different synthesized zeolites ordered from (N1>N2>LTA>G3>G2>G1&for their sources ordered Shale clay >Montmorilonite> Barley husk>Chert rock. The atomic absorption spectrometry was used for analysis of lead heavy metal ion, the obtained results in this study showed that the different synthesized zeolites were efficient ion exchanges for removing heavy metal, in particular, the modified zeolite from shale clay by oxalic acid.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1385
Author(s):  
Botagoz Zhuman ◽  
Shaheen Fatima Anis ◽  
Saepurahman ◽  
Gnanapragasam Singravel ◽  
Raed Hashaikeh

Zeolite-based catalysts are usually utilized in the form of a composite with binders, such as alumina, silica, clay, and others. However, these binders are usually known to block the accessibility of the active sites in zeolites, leading to a decreased effective surface area and agglomeration of zeolite particles. The aim of this work is to utilize carbon nanostructures (CNS) as a binding material for nano-zeolite-Y particles. The unique properties of CNS, such as its high surface area, thermal stability, and flexibility of its fibrous structure, makes it a promising material to hold and bind the nano-zeolite particles, yet with a contemporaneous accessibility of the reactants to the porous zeolite structure. In the current study, a nano-zeolite-Y/CNS composite catalyst was fabricated through a ball milling approach. The catalyst possesses a high surface area of 834 m2/g, which is significantly higher than the conventional commercial cracking catalysts. Using CNS as a binding material provided homogeneous distribution of the zeolite nanoparticles with high accessibility to the active sites and good mechanical stability. In addition, CNS was found to be an effective binding material for nano-zeolite particles, solving their major drawback of agglomeration. The nano-zeolite-Y/CNS composite showed 80% conversion for hexadecane catalytic cracking into valuable olefins and hydrogen gas, which was 14% higher compared to that of pure nano-zeolite-Y particles.


1997 ◽  
Vol 15 (6) ◽  
pp. 465-476 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
G.M. Mohamed

Two samples of Cr2O3/Al2O3 were prepared by mixing a known mass of finely powdered Al(OH)3 with a calculated amount of CrO3 solid followed by drying at 120°C and calcination at 400°C. The amounts of chromium oxide employed were 5.66 and 20 mol% Cr2O3, respectively. The calcined solid specimens were then treated with different doses of γ-rays (20–160 Mrad). The surface and catalytic properties of the different irradiated solids were investigated using nitrogen adsorption at −196°C and the catalysis of CO oxidation by O2 at 300–400°C. The results revealed that γ-rays brought about a slight decrease in the BET surface area, SBET (15%), and in the total pore volume, Vp (20%), of the adsorbent containing 5.66 mol% Cr2O3. The same treatment increased the total pore volume, Vp (36%), and the mean pore radius, r̄ (43%), of the other adsorbent sample without changing its BET surface area. The catalytic activities of both catalyst samples were found to increase as a function of dose, reaching a maximum value at 80–160 Mrad and 40 Mrad for the solids containing 5.66 and 20 mol% Cr2O3, respectively. The maximum increase in the catalytic activity measured at 300°C was 59% and 100% for the first and second catalyst samples, respectively. The induced effect of γ-irradiation on the catalytic activity was an increase in the concentration of catalytically active sites taking part in chemisorption and in the catalysis of CO oxidation by O2 without changing their energetic nature. This was achieved by a progressive removal of surface hydroxy groups during the irradiation process.


Author(s):  
K. S. Hui ◽  
Christopher Y. H. Chao ◽  
C. W. Kwong ◽  
M. P. Wan

This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1905 ◽  
Author(s):  
Xiaoyan Cao ◽  
Qing Wang ◽  
Shuai Wang ◽  
Ruilin Man

In this study, a novel polystyrene-poly(hydroxamic acid) copolymer was synthesized as an effective adsorbent for the treatment of rare earth elements. Through the use of elemental analysis as well as FTIR, SEM, XPS, and Brunauer-Emmett-Teller (BET) surface area measurement, the synthesized polymer was found to have a specific surface area of 111.4 m2·g−1. The adsorption performances of rare metal ions were investigated under different pH levels, contact times, initial concentrations of rare earth ions, and temperatures. The adsorption equilibrium for La3+, Ce3+, and Y3+ onto a polystyrene-poly(hydroxamic acid) copolymer is described by the Langmuir model, which confirms the applicability of monolayer coverage of rare earth ions onto a polystyrene-poly(hydroxamic acid) copolymer. The amount of adsorption capacities for La3+, Ce3+, and Y3+ reached 1.27, 1.53, and 1.83 mmol·g−1 within four hours, respectively. The adsorption process was controlled by liquid film diffusion, particle diffusion, and chemical reaction simultaneously. The thermodynamic parameters, including the change of Gibbs free energy (∆G), the change of enthalpy (∆H), and the change of entropy (∆S), were determined. The results indicate that the adsorption of resins for La3+, Ce3+ and Y3+ was spontaneous and endothermic. The polymer was also used as a recyclable adsorbent by the desorption experiment.


2009 ◽  
Vol 164 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Biljana Pejic ◽  
Marija Vukcevic ◽  
Mirjana Kostic ◽  
Petar Skundric

2015 ◽  
Vol 1125 ◽  
pp. 266-270
Author(s):  
Hasnizah binti Habibun ◽  
Shareena Fairuz binti Abdul Manaf ◽  
Nur Hashimah Alias ◽  
Nur Shahidah Ab Aziz ◽  
Fazlena Hamzah

Biomethane is an alternative and renewable source that occurred naturally which produced from the anaerobic digestion of organic matter. It can be used as the electricity power generation, water heating and also vehicle fuel. In this study, the characteristics of the nanosilica of the tapioca peel as an adsorbent on the structural and physical properties to store the biomethane were investigated. To enhance the adsorption and desorption performance as well as the structural and physical properties, the nanosilica was modified with the metal oxides. The metal oxides that have been used to modify the nanosilica adsorbent are zinc (II) oxide (ZnO) and nickel (II) oxide (NiO). Both of the modified and unmodified nanosilica structural properties were characterized by using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). While, the physical properties of both of the modified and unmodified nanosilica were characterized by using Brunauer, Emmet, Teller (BET) surface area measurement. The effects of both types of metal oxides with different concentration were investigated. Based on the results obtained, the structural and physical characteristics of the nanosilica were affected by the different metal oxides loading. It have been identified that 1% ZnO modified nanosilica has highest BET surface area (8.32 m2/g) with pore volume (19.23 cc/g) and pore size (82.8 nm). Thus, it concluded that 1% ZnO modified nanosilica improved the structural and physical structure. Hence, it enhances the capacity of methane adsorption and desorption prior to storage system.


Sign in / Sign up

Export Citation Format

Share Document