scholarly journals Antifungal activity of cinnamon and clove essential oils against button mushroom pathogens Cladobotryum dendroides (Bull.) W. Gams & Hooz and Lecanicillium fungicola var. fungicola (Preuss) Hasebrauk

2018 ◽  
Vol 33 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Jelena Lukovic ◽  
Milos Stepanovic ◽  
Biljana Todorovic ◽  
Svetlana Milijasevic-Marcic ◽  
Natasa Duduk ◽  
...  

Antifungal activity of two essential oils, cinnamon (Cinnamomum verum J. Presl) and clove (Syzygium aromaticum (L.) Merrill & Perry), was evaluated against Cladobotryum dendroides (Bull.) W. Gams & Hooz, and Lecanicillium fungicola var. fungicola (Preuss) Hasebrauk, the causal agents of cobweb and dry bubble disease of cultivated mushroom. Inhibitory and fungicidal activity of the selected essential oils was assayed using three methods: microdilution, macrodilution fumigant and macrodilution contact method. Comparing all three methods, clove essential oil showed stronger activity than cinnamon against both fungi, having minimum inhibitory concentration (MIC) at the lowest concentrations tested (1.56, 0.02 and 0.1 ?l ml-1, respectively). However, cinnamon oil was more toxic to L. fungicola var. fungicola then to C. dendroides in all three methods. Both oils exhibited stronger antifungal effects when used in the macrodilution fumigant than in contact method. The results showed that both cinnamon and clove essential oils have the potential for further in vivo experiments against L. fungicola var. fungicola and C. dendroides and indicated a possible use of these oils in integrated disease management in mushrooms.

2017 ◽  
Vol 47 (5) ◽  
Author(s):  
Tamara Leite dos Santos ◽  
Leônidas Leoni Belan ◽  
Diego Cunha Zied ◽  
Eustáquio Souza Dias ◽  
Eduardo Alves

ABSTRACT: Lecanicillium fungicola, which causes Dry bubble disease, induces infections and inflicts major losses in champignon production. The control can be managed through measures of hygiene and use of fungicides; however, in Brazil there are no registered products. This study aimed to estimate the influence of various essential oils extracted from Melissa officinalis, Thymus vulgaris, Origanum vulgare, Eucalyptus globulus, Cinnamomum zeylanicum and Syzygium aromaticum on the in vitro development and their uses. Therefore, analysis was performed of the L. fungicola isolates in vitro and the best oils were tested in vivo. Besides, the Agaricus bisporus - L. fungicola interaction was confirmed by scanning electron microscopy (SEM). Cinnamon and clove oils in concentrations of 0.4% and thyme oil of 0.8% were identified as good growth inhibitors of the pathogenic mycelium. Effective inhibition of the conidial germination was seen in all concentrations by cinnamon oil, and by clove and thyme oils only at 0.4% and 0.8%, respectively. When the essential oils were applied post-infestation in the in vivo experiments the incidence of the disease in the mushrooms was much lower. From the SEM it was clear that 19 hours after the inoculation of A. bisporus with L. fungicola, the spores had already completely germinated, revealing the presence of the infection. Therefore, the findings of this study indicated that the oil extracts of cinnamon, clove and thyme are potential and efficient alternatives in the control of dry bubble disease.


2020 ◽  
Vol 19 (1) ◽  
pp. 34-42
Author(s):  
Phanin Sintawarak ◽  
◽  
Suwimon Uthairatsamee ◽  
Tharnrat Keawgrajang ◽  
◽  
...  

Cylindrocladium reteaudii (Bugnic.) Boesew. is a severe pathogen which can cause leaf blight disease in Eucalyptus seedlings in tropical countries. This study investigated the antifungal activity of essential oils extracted from Acorus calamus L. rhizomes in inhibiting the growth of C. reteaudii, both in in vitro and in vivo experiments. The extraction of essential oils from rhizomes was carried out by hydro-distillation technique and the in vitro antifungal testing was done by using the poisoned food technique. The results indicated that an essential oil concentration of 2,000 ppm can completely inhibit the fungal growth with a 50% inhibitory concentration value of 54.76 ppm. For the in vivo experiment, it was found that an essential oil concentration of 500 ppm and Captan® of 1,000 ppm were not significantly different in inhibiting the growth of C. reteaudii. However, these two treatments significantly inhibited the fungal growth (p<0.05) when compared with the control treatments. Physiological and anatomical characteristics were investigated to check for the antifungal activity after the application of essential oils. Results showed that essential oil spraying had no effect on the leaf transpiration rate and temperature of the Eucalyptus seedlings, but the incident disease ratio was high when an essential oil concentration of more than 1,500 ppm was applied. Therefore, it can be inferred that the essential oils from A. calamus rhizomes at an optimum concentration can be an efficient antifungal compound with a potential to control leaf and shoot blight diseases in Eucalyptus seedlings in a nursery.


2018 ◽  
Author(s):  
Ilias Marmouzi ◽  
El Mostafa Karym ◽  
Rachid Alami ◽  
Meryem El Jemli ◽  
Mourad Kharbach ◽  
...  

AbstractBackgroundTherapy combination is defined as disease treatment with two or more medication to acheive efficacy with lower doses or lower toxicity. Regarding its reported toxicities and efficacy, the Essential Oils (EOs) from Syzygium aromaticum (SA) and Pelargonium graveolens (PG) were combined for in vitro and in vivo assays and toxicities.MethodsThe Essential Oils and mixture were tested for in vivo/in vitro antioxidant and anti-inflammatory activities. The assays included the animal model of acute inflammation (carrageenan model), the protective effect on H2O2/Sodium nitroprissude induced stress in Tetrahymena pyriformis, and the in vitro antioxidant assays.ResultsThe chemical analysis of the investigated Oils has lead to the identification of Eugenol (74.06%), Caryophyllene (11.52%) and Carvacrol acetate (7.82%) as the major element in SA; while PG was much higher in Citronellol (30.77%), 10-epi-γ-Eudesmol (22.59%), and Geraniol (13.95%). In our pharmacological screening of samples, both Oils demonstrated good antioxidant effects. In vivo investigation of the antioxidant activity in the protozoa model (T. pyriformis) demonstrated a lesser toxic effect of EOs mixture with no significant differences when oxidative stress markers and antioxidant enzymes (MDA, SOD and CAT) were evaluated. On the other hand the in vivo model of inflammatory response to carrageenan demonstrated a good inhibitory potential of both EOs. The EOs Mixture demonstrated equivalent bioactivity with lower toxic effect and minimal risk for each compound.ConclusionsThe results from this study indicate that EOs mixture from SA and PG demonstrated promising modulatory antioxidant/anti-inflammatory effect, which suggest an efficient association for therapy.


2021 ◽  
Vol 2 (2) ◽  
pp. 93-103
Author(s):  
Nathaniel Hiwandika ◽  
Susana Elya Sudrajat ◽  
Ika Rahayu

Cloves is one of the native Indonesian plants and is used in many aspects of life. Cloves are used in multiple industries and as detergents, soaps, perfumes, food seasonings, aromatherapy, etc. Cloves are mainly used for ingredients in kretek cigarettes in Indonesia. Various studies of cloves reported they have good pharmacological and therapeutic effects. The main compounds of clove extract are eugenol and β-caryophyllene, which are powerful antibacterial and antifungal agents. The clove ethanolic extract showed the activity to inhibit Gram positive and negative bacteria such as B. cereus, S. aureus, E. coli, P. aeruginosa, S. pneumoniae, S. aureus, S. epidermidis, A. hydrophila, K. pneumoniae, P. gingivalis, and P. mirabilis. Clove essential oil has shown the ability to inhibit the growth of V. inaequalis, C. albicans, C. glabrata, and C. tropicalis. Cloves extract can be used as an essential ingredient of various medicines. However, it requires further research and trials.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 352 ◽  
Author(s):  
Pavel Horky ◽  
Sylvie Skalickova ◽  
Kristyna Smerkova ◽  
Jiri Skladanka

Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many studies have shown positive results and confirmed their high antibacterial activity both in vitro and in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the body need to be summarized. The content of EO’s active substances varies depending on growing conditions and consequently on processing and storage. Their content also changes dynamically during the passage through the gastrointestinal tract and their effective concentration can be noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the individual EO’s active substances, they are eliminated from the body at different rates. Despite a strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha arvensis. Several publications also address the effect on the genome. It has been observed that EOs can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of Cinnamomum camphor. This review shows that although oils are mainly studied as promising antimicrobials, it is also important to assess animal safety.


2009 ◽  
Vol 58 (11) ◽  
pp. 1454-1462 ◽  
Author(s):  
Eugénia Pinto ◽  
Luís Vale-Silva ◽  
Carlos Cavaleiro ◽  
Lígia Salgueiro

The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.


2016 ◽  
Vol 56 (2) ◽  
pp. 139-142 ◽  
Author(s):  
Mina M. Yooussef ◽  
Quyen Pham ◽  
Premila N. Achar ◽  
Marikunte Yanjarappa Sreenivasa

AbstractAspergillus parasiticus is one of the most common fungi which contaminates peanuts by destroying peanut shells before they are harvested and the fungus produces aflatoxins. The aim of this study was to evaluate the antifungal activities of seventeen essential oils on the growth of the aflatoxigenic form of A. parasiticus in contaminated peanuts from commercial outlets in Georgia. The agar dilution method was used to test the antifungal activity of essential oils against this form of A. parasiticus at various concentrations: 500; 1,000; 1,500; 2,000; 2,500 ppm. Among the seventeen essential oils tested, the antifungal effect of cinnamon, lemongrass, clove and thyme resulted in complete inhibition of mycelial growth. Cinnamon oil inhibited mycelial growth at ≥ 1,000 ppm, lemongrass and clove oils at ≥ 1,500 ppm and thyme at 2,500 ppm. However, cedar wood, citronella, cumin and peppermint oils showed partial inhibition of mycelial growth. Eucalyptus oil, on the other hand, had less antifungal properties against growth of A. parasiticus, irrespective of its concentration. Our results indicate that the aflatoxigenic form of A. parasiticus is sensitive to selected essential oils, especially cinnamon. These findings clearly indicate that essential oils may find a practical application in controlling the growth of A. parasiticus in stored peanuts.


2019 ◽  
Vol 11 (8) ◽  
pp. 295
Author(s):  
Thalia Mayara Pereira de Melo ◽  
Eliamara Marques da Silva ◽  
Abimael Gomes da Silva ◽  
Gustavo Haralampidou da Costa Vieira ◽  
Beatriz Garcia Lopes

The objective was to determine the effect of essential oils on the mortality and repellency of the Tenuipalpus heveae Baker mite (Acari, Tenuipalpidae). Leaf discs of rubber trees were deposited in Petri dishes containing a moistened cotton layer. Posteriorly, the essential oils were diluted to formulate solutions, which were sprayed onto the discs. The experimental design was completely randomized, in a 3 &times; 4 factorial design: neem, cedar and clove oils at doses 0, 10 &mu;L, 50 &mu;L and 100 &mu;L, with five replicates, with ten adult females being considered per replicate. The exposure to the effect of essential oil was evaluated after 24, 48, 72 and 96 hours for the number of females dead and females in the cotton. The data were submitted to analysis of variance, the values were transformed into (x + 0.5)1/2, and the means were grouped by the Scott-Knot test at 5% probability for the treatments, the doses were submitted to regression analysis. From the 48 hours of evaluation, clove oil showed greater potential for adult mite mortality, being 1.38 in 48 hours, 1.40 in 72 hours and 1.50 in 96 hours. The dose of 100 &mu;L presented a greater potential for the neem and clove oils. The clove essential oil has potential in the control of Tenuipalpus heveae.


2020 ◽  
pp. 1379-1384
Author(s):  
Alex Rodrigues Silva Caetano ◽  
Sara Maria Chalfoun ◽  
Mario Lúcio Vilela Resende ◽  
Caroline Lima Angélico ◽  
Wilder Douglas Santiago ◽  
...  

Essential oils, also known as volatile oils, are substances produced through the secondary metabolism of plants. In this study, we determined the chemical composition and the in vitro and in vivo antifungal activity of the essential oils from four species of Eucalyptus, Eucalyptus citriodora, Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus microcorys, against the Hemileia vastatrix fungus. The essential oils from these four species of Eucalyptus were extracted from their leaves by the hydrodistillation technique using a modified Clevenger apparatus. The chemical characterization was performed by gas chromatography coupled with a mass spectrometer detector and by gas chromatography using a flame ionization detector. The antifungal activities of the essential oils against H. vastatrix were studied by evaluating the percentage of spore germination using the microdilution test for in vitro assays. The curative and preventive effects were evaluated in in vivo tests. The principal constituents of the essential oil from E. citriodora were citronellal, citronellol and isopulegol, while E. camaldulensis produced 1,8-cineole, α-terpineol and α-pinene. 1,8-cineole, α-pinene and α-terpineol were obtained from E. grandis and 1,8-cineole, α-pinene and trans-pinocarveol were the principal components in the essential oil of E. microcorys. In vitro and in vivo antifungal activities against the fungus under study were observed for most of the essential oils, except the essential oil from E. microcorys, for which no preventive antifungal activity was observed. Only the curing of infection by the H. vastatrix fungus was observed with this oil.


2021 ◽  
Vol 12 (4) ◽  
pp. 5031-5044

A series of new 6-[(pyridine-2-yl)oxy]-6,7-dihydro-5H-imidazo[2,1-b]thiazines 4a-l and their benzoannelated derivatives 4m-r was synthesized by the reaction between 3-hydroxy(benzo)imidazo[2,1-b][1,3]thiazines and substituted 2-chloropyridines under the mild conditions with the yield 53-74 %. The structure of the target compound was proven by the results of 1H NMR, 13C NMR spectrometry, and LC-MS. In silico evaluation of these drug-like compounds proved that many of them comply with the Lipinski ‘rule of five’ and the Veber rule. Antibacterial, antifungal, and anti-inflammatory activity of all synthesized compounds were investigated in the in vitro and in vivo experiments. According to the bio screening results, the compounds 6-[(5-сhloropyridin-2-yl)oxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 4a, 6-[(3,5-dichloropyridin-2-yl)oxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 4e and 6-{[3-chloro-5-(trifluoromethyl)pyridin-2-yl]oxy}-2,3-diphenyl-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 4l proved antifungal activity against Candida albicans. On the other hand, 3-[(3,5-dichloropyridin-2-yl)oxy]-3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazine 4q proved the best antifungal activity against Aspergillus niger K 9 (MIC=15.62 µg/ml) and comparatively high antiedema activity against the carrageenan-induced edema of the hind paws of albino rats (the inflammation suppression index was 39.1 %).


Sign in / Sign up

Export Citation Format

Share Document