scholarly journals Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species

2009 ◽  
Vol 58 (11) ◽  
pp. 1454-1462 ◽  
Author(s):  
Eugénia Pinto ◽  
Luís Vale-Silva ◽  
Carlos Cavaleiro ◽  
Lígia Salgueiro

The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3334
Author(s):  
Alina Kunicka-Styczyńska ◽  
Agnieszka Tyfa ◽  
Dariusz Laskowski ◽  
Aleksandra Plucińska ◽  
Katarzyna Rajkowska ◽  
...  

Acidotermophilic bacteria Alicyclobacillus acidoterrestris is one of the main contaminants in the fruit industry forming biofilms which are difficult to remove from the production line by conventional methods. An alternative approach aims for the use of essential oils to prevent Alicyclobacillus biofilm development. The effect of clove essential oil on A. acidoterrestris biofilms on glass and polyvinyl chloride surfaces under static and agitated culture conditions was investigated by atomic force microscopy and the plate count method. The medium-flow and the type of technical surface significantly influenced A. acidoterrestris biofilm. The PVC was colonized in a greater extent comparing to glass. Clove essential oil in 0.05% (v/v) caused 25.1–65.0% reduction of biofilms on the technical surfaces along with substantial changes in their morphology by a decrease in the biofilm: height, surface roughness, and surface area difference. The oil also induced alteration in individual bacterial cells length and visible increase of their roughness. Clove essential oil seems to release EPS from biofilm and thus induce detachment of bacteria from the surface. Due to anti-A. acidoterrestris biofilm activity, the clove oil may be used in the juice industry to hinder a development of A. acidoterrestris biofilms on production surfaces.


2019 ◽  
Vol 11 (8) ◽  
pp. 295
Author(s):  
Thalia Mayara Pereira de Melo ◽  
Eliamara Marques da Silva ◽  
Abimael Gomes da Silva ◽  
Gustavo Haralampidou da Costa Vieira ◽  
Beatriz Garcia Lopes

The objective was to determine the effect of essential oils on the mortality and repellency of the Tenuipalpus heveae Baker mite (Acari, Tenuipalpidae). Leaf discs of rubber trees were deposited in Petri dishes containing a moistened cotton layer. Posteriorly, the essential oils were diluted to formulate solutions, which were sprayed onto the discs. The experimental design was completely randomized, in a 3 × 4 factorial design: neem, cedar and clove oils at doses 0, 10 μL, 50 μL and 100 μL, with five replicates, with ten adult females being considered per replicate. The exposure to the effect of essential oil was evaluated after 24, 48, 72 and 96 hours for the number of females dead and females in the cotton. The data were submitted to analysis of variance, the values were transformed into (x + 0.5)1/2, and the means were grouped by the Scott-Knot test at 5% probability for the treatments, the doses were submitted to regression analysis. From the 48 hours of evaluation, clove oil showed greater potential for adult mite mortality, being 1.38 in 48 hours, 1.40 in 72 hours and 1.50 in 96 hours. The dose of 100 μL presented a greater potential for the neem and clove oils. The clove essential oil has potential in the control of Tenuipalpus heveae.


Author(s):  
Ergüden Bengü

Although there are innovations in the treatment of diseases caused by fungi and medicines with multiple targets have been developed, the search for a drug with a broad spectrum and without any side effects continues to date. It is generally accepted that determining the cellular target responsible for the toxic effect opens up new possibilities for the development of new drugs. Especially the effects of antifungal agents on the surface components of the fungal cell, on cell wall synthesis and the identification of the target site are crucial in antifungal drug development. Thus studies on the fungal cell membranes in connection with the antifungal agents, aim to develop new strategies for the therapy of fungal infections. Antifungal agents targeting fungal cell wall and cell membrane components have increased in importance in clinical studies. In this study, understanding the mechanism of action of benzyl alcohol, a known membrane fluidizer, and the determination of its cellular targets are aimed. We have shown that in the presence of sorbitol, the osmotic stabilizer, benzyl alcohol becomes less effective against yeast cell. Moreover, benzyl alcohol disrupts cell membrane, causing leakage of ions to the extracellular medium. Nuclear membrane is distorted upon treatment of yeast cells with benzyl alcohol. Thus, we conclude that both outer and inner yeast cell membranes are compromised by the action of benzyl alcohol.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5476 ◽  
Author(s):  
Delmacia G. de Macêdo ◽  
Marta Maria A. Souza ◽  
Maria Flaviana B. Morais-Braga ◽  
Henrique Douglas M. Coutinho ◽  
Antonia Thassya L. dos Santos ◽  
...  

Medicinal plants play a crucial role in the search for components that are capable of neutralizing the multiple mechanisms of fungal resistance. Psidium salutare (Kunth) O. Berg is a plant native to Brazil used as both food and traditional medicine to treat diseases and symptoms such as stomach ache and diarrhea, whose symptoms could be related to fungal infections from the genus Candida. The objective of this study was to investigate the influence of seasonal variability on the chemical composition of the Psidium salutare essential oil, its antifungal potential and its effect on the Candida albicans morphogenesis. The essential oils were collected in three different seasonal collection periods and isolated by the hydrodistillation process in a modified Clevenger apparatus with identification of the chemical composition determined by gas chromatography coupled to mass spectrometry (GC/MS). The antifungal assays were performed against Candida strains through the broth microdilution method to determine the minimum fungicidal concentration (MFC). Fungal growth was assessed by optical density reading and the Candida albicans dimorphic effect was evaluated by optical microscopy in microculture chambers. The chemical profile of the essential oils identified 40 substances in the different collection periods with γ-terpinene being the predominant constituent. The antifungal activity revealed an action against the C. albicans, C. krusei and C. tropicalis strains with an IC50 ranging from 345.5 to 2,754.2 µg/mL and a MFC higher than 1,024 µg/mL. When combined with essential oils at sub-inhibitory concentrations (MIC/16), fluconazole had its potentiated effect, i.e. a synergistic effect was observed in the combination of fluconazole with P.salutare oil against all Candida strains; however, for C. albicans, its effect was reinforced by the natural product in all the collection periods. The results show that the Psidium salutare oil affected the dimorphic transition capacity, significantly reducing the formation of hyphae and pseudohyphae in increasing concentrations. The results show that P. salutare oil exhibits a significant antifungal activity against three Candida species and that it can act in synergy with fluconazole. These results support the notion that this plant may have a potential use in pharmaceutical and preservative products.


2020 ◽  
Vol 5 (2) ◽  
pp. 364-375
Author(s):  
Amraini Amelia ◽  
◽  
Nining Sugihartini ◽  
Hari Susanti ◽  

This review aims to determine the types of bases that can be used every day, which are effective and efficient as anti-inflammatory drugs. The research method used was to review the development of clove essential oil formulations that have been carried out using various concentrations of various types of bases including M / A type cream, A / M type cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorbents. The recommended formulation is type M / A cream with a concentration of 5% clove flower essential oil. The types of bases studied were M / A cream, type A / M cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorption properties which had good physical properties and did not irritate the skin of the test animals. This review refers to several national and international journals released in the last ten years, from 2010 to 2020.


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Magdaléna Kapustová ◽  
Giuseppe Granata ◽  
Edoardo Napoli ◽  
Andrea Puškárová ◽  
Mária Bučková ◽  
...  

Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.


Author(s):  
Tiago Soraggi Battagin ◽  
Mario Nicolas Caccalano ◽  
Guilherme Dilarri ◽  
Caio Felipe Cavicchia Zamuner ◽  
Natália Alleoni ◽  
...  

2011 ◽  
Vol 1 (6) ◽  
pp. 248-254
Author(s):  
R. Amudan ◽  
D. V. Kamat ◽  
S. D. Kamat

The essential oil of clove ( Syzygium aromaticum) holds an important positionamongst widely used essential oils. A typical steam distillation processfor the extraction of clove oil provides a 10.1% yield. Recent studies involvedthe use of enzymes such as pectinase, amylase, lignocellulase, and cellulaseon the powder of clove buds, prior to extraction. The traditional methods ofphysical and chemical extraction are effective but may affect the structure,quality and yield of the phytochemicals extracted. In the current study,hence, enzymes specific for action on the cell wall have been used in the pretreatment prior to extraction, to enhance the quality and yield of the phytochemicalsextracted. The results indicated that all the enzymes, gave morethan 50% higher yield than control in terms of weight of extracted essentialoil. A mixture of the enzymes gave the highest yield of 17.82%. Gas chromatographyresults indicated that the essential oil extracted using amylase hada maximum eugenol content of 70%, in comparison with the eugenol content(62–68%) in the essential oils extracted using the rest of the enzymes.Antibacterial activity of all the extracts was studied on methicillin â€resistantStaphylococcus aureus  (MRSA). The essential oil extracted by using amylaseinhibitedMRSA, showed a zone size of 40 mm, whereas the essential oil extractedby using lignocellulase showed a zone size of 45 mm. The gas chromatogramindicated the maximum number of peaks in this extract, whichcould be producing a combined antibacterial effect on the organism. Thespecific gravity values of the essential oil extracted using lignocellulase andamylase was 1.051 and 1.062, respectively, whereas the control had a specificgravity of 1.015.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3032 ◽  
Author(s):  
Suresh Mickymaray ◽  
Wael Alturaiki

Fungal sensitization is very common in bronchial asthmatic cases, and the connection with airway colonization by fungi remains uncertain. Antifungal therapy failure is a significant fraction of the cost and morbidity and mortality in the majority of the asthmatic cases. Hence, the present study aimed to investigate the antifungal activity of five marine macroalgae—Acanthaophora specifera, Cladophoropsis sp., Laurencia paniculata, Tydemania sp., and Ulva prolifera—which were tested on selected fungal pathogens isolated from 15 sputum of 45 bronchial asthmatic patients. The highest antifungal activity was observed in ethanol fractions of L. paniculata followed by U. prolifera, Cladophoropsis sp., A. specifera, and Tydemania sp. The minimum fungicidal concentration and minimum inhibitory concentration values of the ethanolic fractions of algal species were found to be 125–1000 µg/mL and 125–500 µg/mL, respectively. The algal extracts contained terpene alcohol, diterpene, steroids, sesquiterpene, and sesquiterpene alcohol, as determined by GC–MS/MS analyses. The present study shows that the marine macroalgae containing bioactive compounds had excellent inhibitory activity against a variety of fungal pathogens, which may be useful for combating fungal infections and recovering from chronic asthmatic states.


Sign in / Sign up

Export Citation Format

Share Document