scholarly journals Fpga-based control of piezoelectric actuators

2011 ◽  
Vol 8 (2) ◽  
pp. 181-201 ◽  
Author(s):  
László Juhász ◽  
Jürgen Maas

In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 ?m/s up to 5 cm/s are given.

2021 ◽  
Vol 11 (16) ◽  
pp. 7308
Author(s):  
Md Habibur Rahman ◽  
Mohammad Abrar Shakil Sejan ◽  
Wan-Young Chung

Visible light positioning (VLP) is a cost-effective solution to the increasing demand for real-time indoor positioning. However, owing to high computational costs and complicated image processing procedures, most of the existing VLP systems fail to deliver real-time positioning ability and better accuracy for image sensor-based large-area indoor environments. In this study, an effective method is proposed to receive coordinate information from multiple light-emitting diode (LED) lights simultaneously. It provides better accuracy in large experimental areas with many LEDs by using a smartphone-embedded image sensor as a terminal device and the existing LED lighting infrastructure. A flicker-free frequency shift on–off keying line coding modulation scheme was designed for the positioning system to ensure a constant modulated frequency. We tested the performance of the decoding accuracy with respect to vertical and horizontal distance, which utilizes a rolling shutter mechanism of a complementary metal-oxide-semiconductor image sensor. The experimental results of the proposed positioning system can provide centimeter-level accuracy with low computational time, rendering it a promising solution for the future direction of large-area indoor positioning systems.


1980 ◽  
Author(s):  
D. E. Mann

This paper describes the hardware structure and design of a general-purpose microprocessor based controller intended for the full authority control of gas turbine and diesel engines in ground based vehicle and industrial applications. Particular attention is paid to the digital processor and how it’s design was influenced by the user requirements of a general purpose, real-time system. The system is currently being manufactured in production form. An accompanying paper describes the supporting software and user program facilities (Ref 1). Such systems based on the use of microprocessors must not only provide general purpose hardware, but also software structured so that a wide range of control algorithms may be programmed and performed within strict limits of real-time. This paper describes the development of the Type C4E87 General Purpose Controller (REF Fig. 1) with particular reference to its hardware structure and design within a system intended primarily for application as a full authority control of gas turbine and diesel engines etc.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Davide Maria La Rosa ◽  
Marco Maria Agostino Rossi ◽  
Giacomo Ferrarese ◽  
Stefano Malavasi

Abstract Perforated plates are commonly used for flow control in pressurized systems. In different industrial applications, these devices are also used in series (multistage perforated plates) to manage high pressure drop or reduce cavitation occurrence in industrial pipes and enhance efficiency of gas turbines in power plants. Based on analysis of literature and modeling considerations, a functional relationship that describes the dimensionless pressure loss for multistage perforated plates is proposed in this paper. Moreover, numerical investigation of the influence of the spacing between perforated plates for two identical-stage plates with aligned and misaligned holes is carried out by simulating a wide range of Reynolds number in turbulent flow regime. The obtained results include the trend of the pressure loss coefficient as the spacing between the two perforated plates varies for both cases of aligned and misaligned holes. The numerical achievements also show that for small spacing, the pressure loss coefficient is very different from that caused by two independent plates and is strongly influenced by the alignment between the holes of the two plates. By increasing the spacing, the behavior of the losses caused by the two-stage plates tends to that of two independent plates. A critical spacing between the plates has also been defined, beyond which the pressure losses are independent from the alignment of the holes.


2000 ◽  
Vol 12 (2) ◽  
pp. 172-179
Author(s):  
Daigoro Isobe ◽  
◽  
Hiroshi Nakamura ◽  
Ryuta Shimizu ◽  
◽  
...  

In this paper, the Finite Element Method (FEM) and the previously proposed inverse theory for bimorph piezoelectric actuators are applied into a real time control algorithm of connected piezoelectric actuators. Most control schemes handle an entire system in series, which becomes a drawback when some elements lose their function in a higher redundant system. On the other hand, the FEM can handle the system in parallel by subdividing it into discrete finite elements, and can cope with flexibility in the change of form and material properties. Noncompatible finite elements are used to express the actuators in the control algorithm, and empirical formulae considering time-dependent characteristics such as creep and residual strain, are also implemented. A real-time FEM control system, which consists of a PC, a bipolar DC unit and a signal-distributing controller, is developed. The system is verified by experiments on quasi-static displacement control of connected piezoelectric actuators. The results show the possibility of highly accurate, realtime control of the actuators using the FEM.


Author(s):  
J-D Kim ◽  
S-R Nam

Micro-positioning systems using piezoelectric actuators have a very wide range of applications including ultra-precision machine tools, optical devices and measurement systems. In order to ensure a high-precision displacement resolution, they use a position sensor and error feedback. From a practical point of view, a high-resolution displacement sensor system is very expensive and it is difficult to guarantee that such sensitive sensors work properly in the harsh operating environments of industry. In this paper, a micro-positioning grinding table has been developed which does not require a position sensor but instead uses piezoelectric voltage feedback. It is driven by a hysteresis-sensitive reference input voltage calculated by computer using the actuator/sensor characteristics of piezoelectric materials. The experimental results illustrate the fast and stable response of the micro-positioning system, and the paper suggests a more efficient technique for controlling piezoelectric actuators.


Author(s):  
Ali Ashasi-Sorkhabi ◽  
Stanley Fong ◽  
Guru Prakash ◽  
Sriram Narasimhan

Data-driven condition-based maintenance (CBM) can be an effective predictive maintenance strategy for components within complex systems with unknown dynamics, nonstationary vibration signatures or a lack of historical failure data. CBM strategies allow operators to maintain components based on their condition in lieu of traditional alternatives such as preventive or corrective strategies. In this paper, the authors present an outline of the CBM program and a field pilot study being conducted on the gearbox, a critical component in an automated cable-driven people mover (APM) system at Toronto’s Pearson airport. This CBM program utilizes a paired server-client “two-tier” configuration for fault detection and prognosis. At the first level, fault detection is performed in real-time using vibration data collected from accelerometers mounted on the APM gearbox. Time-domain condition indicators are extracted from the signals to establish the baseline condition of the system to detect faults in real-time. All tier one tasks are handled autonomously using a controller located on-site. In the second level pertaining to prognostics, these condition indicators are utilized for degradation modeling and subsequent remaining useful life (RUL) estimation using random coefficient and stochastic degradation models. Parameter estimation is undertaken using a hierarchical Bayesian approach. Degradation parameters and the RUL model are updated in a feedback loop using the collected degradation data. While the case study presented will primarily focus on a cable-driven APM gearbox, the underlying theory and the tools developed to undertake diagnostics and prognostics tasks are broadly applicable to a wide range of other civil and industrial applications.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Sign in / Sign up

Export Citation Format

Share Document