scholarly journals Mathematical model to determine the surface stress acting on the tooth of gear

2010 ◽  
Vol 37 (2) ◽  
pp. 97-110
Author(s):  
J. Hinojosa-Torres ◽  
J.L. Hernández-Anda ◽  
J.M. Aceves-Hernández

Surface stress on the surface contact of gear tooth calculated by the Buckingham equation constitutes the basis for The American Gear Manufacturers Association (AGMA) pitting resistance formula, which is based on a normal stress that does not cause failure since the yielding in contact problems is caused by shear stresses. An alternative expression based on the maximum-shear-stress is proposed in this paper. The new expression is obtained by using the maximum-shear-stress distribution and the Tresca failure criteria in order to know the maximum-shear-stress value and its location beneath the contact surface. Remarkable differences between the results using the proposed equation and those when the AGMA equation is applied are found.

2018 ◽  
Vol 147 ◽  
pp. 01005
Author(s):  
Jonie Tanijaya

This study is carried out to evaluate the potential of three hybrid T-beams with web openings theoretical shear stresses distribution. The shear stresses at the opening edges were plotted at the working stage, yielding stage and collapse stage for these three tested beams. The available experimental results from the previous research was compared to the finite element results as well as the developed analytical. The shear stress distribution at the middle of the top and bottom chords of the opening in pure bending region are zero. At the upper and lower corners of the opening occurs the maximum shear stresses. The maximum shear stress occurs at the right lower corner chord at the high moment edge and at the left upper corner chord at the low moment edge in beams with openings at high shear and high flexural – shear region. Furthermore, an extensive parametric study is performed on these beams to find the distributing ratio of the shear force between the opening chords. The shear force at an opening in hybrid R/C T-beam is carried by the top and bottom chords of the opening according to the area – moment of inertia root ratio with the correction factor 0.70.


1975 ◽  
Vol 19 (03) ◽  
pp. 155-163
Author(s):  
M. A. Shama

A brief note is given on various components of the longitudinal vertical shearing force. The stillwater component is examined with particular emphasis on the effect of local cargo loading and the mechanism of shear load transmission. The main factors affecting the wave-induced and dynamic components are indicated and an approximate method is given for estimating the impulsive dynamic component. A method is then given for calculating the shear stress distribution over a typical section of a bulk carrier. The ship section is idealized by a simplified structural model comprising closed and open cells. The structural model retains all the geometrical properties of the original section. Two numerical examples are considered to examine the effect of ship section parameters on shear stress distribution. It is shown that:(i) High shear stresses may be developed in the side shell plating.(ii) The variation of ship section parameters has a negligible effect on the maximum shear stress and may have a significant local effect.(iii) The shear carrying capacity of a given ship section could be easily estimated. Alternatively, for a given shearing force, a "shear coefficient," representing shear capability, could be estimated.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 299-306 ◽  
Author(s):  
Richard J. Lisle

AbstractThe assumption is widely made that slip on faults occurs in the direction of maximum resolved shear stress, an assumption known as the Wallace-Bott hypothesis. This assumption is used to theoretically predict slip directions from known in situ stresses, and also as the basis of palaeostress inversion from fault-slip data. This paper examines different situations in relation to the appropriateness of this assumption. Firstly, it is shown that the magnitude of the shear stress resolved within a plane is a function with a poorly defined maximum direction, so that shear stress values greater than 90% of the maximum occur within a wide angular range (± 26°) degrees. The situation of simultaneous movement on pairs of faults requires slip on each fault to be parallel to their mutual line of intersection. However, the resolved shear stresses arising from a homogeneous state of stress do not accord with such a slip arrangement except in the case of pairs of perpendicular faults. Where fault surfaces are non-planar, the directions of resolved shear stress in general give, according to the Wallace-Bott hypothesis, a set of slip directions of rigid fault blocks, which is generally kinematically incompatible. Finally, a simple model of a corrugated fault suggests that any anisotropy of the shear strength of the fault such as that arising from fault surface topography, can lead to a significant angular difference between the directions of maximum shear stress and the slip direction.These findings have relevance to the design of procedures used to estimate palaeostresses and the amount of data required for this type of analysis.


1989 ◽  
Vol 111 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Farshid Sadeghi ◽  
Ping C. Sui

The internal stress distribution in elastohydrodynamic lubrication of rolling/sliding line contact was obtained. The technique involves the full EHD solution and the use of Lagrangian quadrature to obtain the internal stress distributions in the x, y, z-directions and the shear stress distribution as a function of the normal pressure and the friction force. The principal stresses and the maximum shear stress were calculated for dimensionless loads ranging from (2.0452 × 10−5) to (1.3 × 10−4) and dimensionless velocity of 10−10 to 10−11 for slip ratios ranging from 0 to pure sliding condition.


2003 ◽  
Vol 125 (5) ◽  
pp. 628-638 ◽  
Author(s):  
Masako Sugihara-Seki ◽  
Geert W. Schmid-Scho¨nbein

Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 μm diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 μm diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Chenglin Liu ◽  
Shijie He ◽  
Xiaojun Li ◽  
Bo Huo ◽  
Baohua Ji

It has been recognized that cells are able to actively sense and respond to the mechanical signals through an orchestration of many subcellular processes, such as cytoskeleton remodeling, nucleus reorientation, and polarization. However, the underlying mechanisms that regulate these behaviors are largely elusive; in particular, the quantitative understanding of these mechanical responses is lacking. In this study, combining experimental measurement and theoretical modeling, we studied the effects of rigidity and pattern geometry of substrate on collective cell behaviors. We showed that the mechanical force took pivotal roles in regulating the alignment and polarization of cells and subcellular structures. The cell, cytoskeleton, and nucleus preferred to align and polarize along the direction of maximum principal stress in cell monolayer, and the driving force is the in-plane maximum shear stress. The higher the maximum shear stress, the more the cells and their subcellular structures preferred to align and polarize along the direction of maximum principal stress. In addition, we proved that in response to the change of in-plane shear stresses, the actin cytoskeleton is more sensitive than the nucleus. This work provides important insights into the mechanisms of cellular and subcellular responses to mechanical signals. And it also suggests that the mechanical force does matter in cell behaviors, and quantitative studies through mechanical modeling are indispensable in biomedical and tissue engineering applications.


2010 ◽  
Vol 431-432 ◽  
pp. 98-101
Author(s):  
Jia Jing Yuan ◽  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
Feng Xu

The contact stress of cemented carbide with NCD coating in elastic contact was analyzed using ANSYS. Factors such as elastic modulus and thickness of NCD film and elastic modulus of interlayer which affect the shear stress distribution of NCD film on cemented carbide substrate were investigated. The results show that the maximum shear stress point moves towards the interface with the increase of film elastic modulus. Film thickness has a significant effect on shear stress distribution of NCD film. High shear stress develops in the film layer with the increase of film thickness. Interlayer with low elastic modulus will cause shear stress concentration in NCD film.


Author(s):  
Itzhak Green

This work determines the location of the greatest elastic distress in cylindrical contacts based upon the distortion energy and the maximum shear stress theories. The ratios between the maximum pressure, the von Mises stress, and the maximum shear stress are determined and fitted by empirical formulations for a wide range of Poisson ratios, which represent material compressibility. Some similarities exist between cylindrical and spherical contacts, where for many metallic materials the maximum von Mises or shear stresses emerge beneath the surface. However, if any of the bodies in contact is excessively compressible the maximum von Mises stress appears at the surface. That transitional Poisson ratio is found. The critical force per unit length that causes yielding onset, along with its corresponding interference and half-width contact are derived.


2012 ◽  
Vol 568 ◽  
pp. 216-221
Author(s):  
Shu Kuan Zhang ◽  
Pei Yan Huang ◽  
Hao Zhou ◽  
Chuan Yu Zhao

Fiber reinforced polymer (FRP) is widely applied in the concrete and steel structure reinforcement field because of its high strength and convenient constructability in civil engineering. The adhesive joint is the weakness of the reinforced structure, but with the complicated stress distribution for analytic method. Numerical method provides the best solution to the further analysis. In this paper, a finite element method (FEM) of double lap joint model was established with ANSYS to investigate the shear stress in the adhesive joint of the reinforced structure, the shear stresses were analyzed in detail in both length and thickness direction in civil engineering. The results show that, 1) the FEM calculation results of shear stress of adhesive and the theoretical calculation values are consistent within the main part of the adhesive; 2) FEM is the effective method to further study the shear stress distribution of the adhesive, meshing size has great influence on the results of calculation; 3) to obtain more accurate analysis of shear stress distribution, the non-linear characteristics of the adhesive should be considered


Sign in / Sign up

Export Citation Format

Share Document