Decreased Resistance to Trichinella spiralis in Aged Mice

1975 ◽  
Vol 61 (3) ◽  
pp. 566 ◽  
Author(s):  
Richard B. Crandall
Author(s):  
D.S. Friend ◽  
N. Ghildyal ◽  
M.F. Gurish ◽  
K.F. Austen ◽  
R.L. Stevens

Trichinella spiralis induces a profound mastocytosis and eosinophilia in the small intestine of the infected mouse. Mouse mast cells (MC) store in their granules various combinations of at least five chymotryptic chymases [designated mouse MC protease (mMCP) 1 to 5], two tryptic proteases designated mMCP-6 and mMCP-7 and an exopeptidase, carboxypeptidase A (mMC-CPA). Using antipeptide, protease -specific antibodies to these MC granule proteases, immunohistochemistry was done to determine the distribution, number and protease phenotype of the MCs in the small intestine and spleen 10 to >60 days after Trichinella infection of BALB/c and C3H mice. TEM was performed to evaluate the granule morphology of the MCs between intestinal epithelial cells and in the lamina propria (mucosal MCs) and in the submucosa, muscle and serosa of the intestine (submucosal MCs).As noted in the table below, the number of submucosal MCs remained constant throughout the study. In contrast, on day 14, the number of MCs in the mucosa increased ~25 fold. Increased numbers of MCs were observed between epithelial cells in the mucosal crypts, in the lamina propria and to a lesser extent, between epithelial cells of the intestinal villi.


2021 ◽  
pp. 2000652
Author(s):  
Jisong Ahn ◽  
Hyo Jeong Son ◽  
Hyo Deok Seo ◽  
Tae Youl Ha ◽  
Jiyun Ahn ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoxiang Hu ◽  
Xiaolei Liu ◽  
Chen Li ◽  
Yulu Zhang ◽  
Chengyao Li ◽  
...  

Abstract Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miwa Nahata ◽  
Sachiko Mogami ◽  
Hitomi Sekine ◽  
Seiichi Iizuka ◽  
Naoto Okubo ◽  
...  

AbstractChronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.


Sign in / Sign up

Export Citation Format

Share Document