scholarly journals SEISMIC ANISOTROPY PARAMETERS OF TRANSVERSE WAVES BY GAJIGABUL EARTHQUAKE WHICH OCCURRED 10 FEBRUARY 2014 ML = 5,8

Author(s):  
С.Э. Казымова ◽  
И.Э. Казымов

В статье представлен анализ параметров расщепленных поперечных волн от глубокого (h = 56 км) землетрясения, произошедшего в пределах Нижнекуринской впадины 10 февраля 2014 г. с Ml = 5,8. Пространственный анализ волновых форм ведется с использованием 3‑хкомпонентных цифровых записей сигнала. Для выделенных участков 3‑хкомпонентной записи в программе «DIMAS» строится трехмерный график траектории движения частиц и проекции траектории движения на плоскости NE, NZ, EZ. Установлен эффект двулучепреломления, когда поперечная волна расщепляется на две (S1 и S2), каждая из которых имеет свою поляризацию и скорость для широкополосных трехкомпонентных записей (BHE, BHN, BHZ) 4‑х сейсмических станций («QUB», «GAN», «LKR», «GOB»). Это дает возможность изучения мелкомасштабных деформаций для лучшего понимания динамических процессов и свойств среды с глубиной In the article presents an analysis of the parameters of split shear waves from deep (h = 56 km) the earthquake occurred within the Lower Kura depression February 10, 2014 with Ml = 5,8. Spatial analysis of waveforms is conducted with use 3‑component digital signal records. For selected areas of 3‑component records in the program «DIMAS» construct a three-dimensional graph of the trajectory of particle motion and trajectory of the projection on the plane NE, NZ, EZ. Established the birefringence effect, ie, shear wave splits into two (S1 and S2), each of which has its polarization and the rate for broadband three component records (BHE, BHN, BHZ) of 4 seismic stations («QUB», «GAN», «LKR», «GOB»). This makes it possible to study small-scale deformations for a better understanding of dynamic processes and properties with depth media

2021 ◽  
Author(s):  
Caroline Eakin

Abstract The Australian continental crust preserves a rich geological history, but it is unclear to what extent this history is expressed deeper within the mantle. Scattering of surface waves predominantly between 100-200 km depth by lateral gradients in seismic anisotropy, termed Quasi-Love waves, offer potential new insights. Across Australasia over 275 new scatterers are detected, and are found to be preferentially located near (1) the passive continental margins, and (2) the boundaries of major geological provinces within Australia. Such lateral anisotropic gradients imply pervasive fossilized lithospheric anisotropy within the continental interior, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that preserves this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere, such as edge-drive convection, tied to the transition from oceanic to continental lithosphere.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


1996 ◽  
Vol 328 ◽  
pp. 345-407 ◽  
Author(s):  
C. H. K. Williamson

It is now well-known that the wake transition regime for a circular cylinder involves two modes of small-scale three-dimensional instability (modes A and B), depending on the regime of Reynolds number (Re), although almost no understanding of the physical origins of these instabilities, or indeed their effects on near-wake formation, have hitherto been made clear. We address these questions in this paper. In particular, it is found that the two different modes A and B scale on different physical features of the flow. Mode A has a larger spanwise wavelength of around 3–4 diameters, and scales on the larger physical structure in the flow, namely the primary vortex core. The wavelength for mode A is shown to be the result of an ‘elliptic instability’ in the nearwake vortex cores. The subsequent nonlinear growth of vortex loops is due to a feedback from one vortex to the next, involving spanwise-periodic deformation of core vorticity, which is then subject to streamwise stretching in the braid regios. This mode gives an out-of-phase streamwise vortex pattern.In contrast, mode-B instability has a distinctly smaller wavelength (1 diameter) which scales on the smaller physical structure in the flow, the braid shear layer. It is a manifestation of an instability in a region of hyperbolic flow. It is quite distinct from other shear flows, in that it depends on the reverse flow of the bluff-body wake; the presence of a fully formed streamwise vortex system, brought upstream from a previous half-cycle, in proximity to the newly evolving braid shear layer, leads to an in-phase stream-wise vortex array, in strong analogy with the ‘Mode 1’ of Meiburg & Lasheras (1988) for a forced unseparated wake. In mode B, we also observe amalgamation of streamwise vortices from a previous braid with like-sign vortices in the subsequent braid.It is deduced that the large scatter in previous measurements concerning mode A is due to the presence of vortex dislocations. Dislocations are triggered at the sites of some vortex loops of mode A, and represent a natural breakdown of the periodicity of mode A instability. By minimizing or avoiding the dislocations which occur from end contamination or which occur during wake transition, we find an excellent agreement of both critical Re and spanwise wavelength of mode A with the recent secondary stability analysis of Barkley & Henderson (1996).Wake transition is further characterized by velocity and pressure measurements. It is consistent that, when mode-A instability and large-scale dislocations appear, one finds a reduction of base suction, a reduction of (two-dimensional) Reynolds stress level, a growth in size of the formation region, and a corresponding drop in Strouhal frequency. Finally, the present work leads us to a new clarification of the possible flow states through transition. Right through this regime of Re, there exist two distinct and continuous Strouhal frequency curves: the upper one corresponds with purley small- scale instabilities (e.g. denoted as mode A), while the lower curve corresponds with a combination of small-scale plus dislocation structures (e.g. mode A*). However, some of the flow states are transient or ‘unstable’, and the natural transitioning wake appears to follow the scenario: (2D→A*→B).


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 331
Author(s):  
Kosei Takishita ◽  
Alexandros P. Poulidis ◽  
Masato Iguchi

Vulcanian eruptions (short-lived explosions consisting of a rising thermal) occur daily in volcanoes around the world. Such small-scale eruptions represent a challenge in numerical modeling due to local-scale effects, such as the volcano’s topography impact on atmospheric circulation and near-vent plume dynamics, that need to be accounted for. In an effort to improve the applicability of Tephra2, a commonly-used advection-diffusion model, in the case of vulcanian eruptions, a number of key modifications were carried out: (i) the ability to solve the equations over bending plume, (ii) temporally-evolving three-dimensional meteorological fields, (iii) the replacement of the particle diameter distribution with observed particle terminal velocity distribution which provides a simple way to account for the settling velocity variation due to particle shape and density. We verified the advantage of our modified model (Tephra4D) in the tephra dispersion from vulcanian eruptions by comparing the calculations and disdrometer observations of tephra sedimentation from four eruptions at Sakurajima volcano, Japan. The simulations of the eruptions show that Tephra4D is useful for eruptions in which small-scale movement contributes significantly to ash transport mainly due to the consideration for orographic winds in advection.


Sign in / Sign up

Export Citation Format

Share Document