Electric Spring-based Smart Water Heater for Low Voltage Microgrids

Author(s):  
Alexander Micallef ◽  
Racquel Ellul ◽  
John Licari
Keyword(s):  
2021 ◽  
Vol 8 (9) ◽  
pp. 362-372
Author(s):  
Ifeoluwa David Solomon ◽  
Oluwole Abiodun Adegbola ◽  
Peter Olalekan Idowu

Renewable energy sources are those that replenish naturally without depletion. Example of such sources are bioenergy, hydropower, geothermal, wind and solar energy sources. The alarming rate of global energy demand and consumption necessitates an immediate solution for energy conservation and maximum efficiency of new technological gadgets now being built. As a gadget, a solar water heater transforms dc electricity into heat energy, which is then transferred to the water in which it is immersed. The size of the heater is determined by its design, capacity, and intended purpose; it might be for household or industrial use. As an alternative to conventional electric water heaters, this effort focuses on the design and development of a solar-powered smart water heater. In tests using a variety of settings, the solar-powered smart heater that was constructed performed admirably. The components used include a PIC16F876A microcontroller, a 12 V/300 W monocrystalline PV, a 12 V/ 40 A charge controller, and 12 V / 150 W dc submersible heating element among others The temperature control capacity of the fabrication makes it useful in water management system applications such as in aquaculture fingerling hatchery, hot water dispenser and shower among others. The system showed excellent performance in water temperature control using a 150 watts dc heater. Keywords:Solar, heater, photo-voltaic, temperature-controlled, direct current, alternating current .


Author(s):  
Toshiyuki Nagai ◽  
Akira Yoshida ◽  
Yoshiharu Amano

In order to reduce CO2 emissions in the residential sector, the installation of photovoltaics (PV) has been increasing extensively. However, such large-scale PV installations cause problems in the low-voltage distribution grid of the residential sector, such as PV related voltage surges. In this study, the utilization of suppressed PV output through energy storage devices was proposed. Using demand side energy storage devices reduces voltage surge, transmission loss, and CO2 emissions from the residential buildings. The objective of this study was to add voltage constraints of the low-voltage distribution grid to an operational planning problem that we developed for the residential energy systems, and to quantitatively evaluate the potential of heat pump water heater (HP) to utilize the PV surplus electricity, while considering the electrical grid constraints based on the minimization of CO2 emissions. We found that when a 4.5 kW HP with 370 L storage, which utilizes PV output, was added to the system, the reduction in CO2 emissions was more than twice compared with that in the case of adding 4 kWh battery (BT) to a PV and gas fired water heater configuration. Further, the effect of utilizing the suppressed PV electricity by HP was almost equivalent to that by the BT. Therefore, the potential of HP in utilizing PV surplus electricity is higher than that of the BT in terms of CO2 emissions reduction in the residential sector.


Author(s):  
Marek Malecki ◽  
J. Victor Small ◽  
James Pawley

The relative roles of adhesion and locomotion in malignancy have yet to be clearly established. In a tumor, subpopulations of cells may be recognized according to their capacity to invade neighbouring tissue,or to enter the blood stream and metastasize. The mechanisms of adhesion and locomotion are themselves tightly linked to the cytoskeletal apparatus and cell surface topology, including expression of integrin receptors. In our studies on melanomas with Fluorescent Microscopy (FM) and Cell Sorter(FACS), we noticed that cells in cultures derived from metastases had more numerous actin bundles, then cells from primary foci. Following this track, we attempted to develop technology allowing to compare ultrastructure of these cells using correlative Transmission Electron Microscopy(TEM) and Low Voltage Scanning Electron Microscopy(LVSEM).


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Author(s):  
Zhifeng Shao

Recently, low voltage (≤5kV) scanning electron microscopes have become popular because of their unprecedented advantages, such as minimized charging effects and smaller specimen damage, etc. Perhaps the most important advantage of LVSEM is that they may be able to provide ultrahigh resolution since the interaction volume decreases when electron energy is reduced. It is obvious that no matter how low the operating voltage is, the resolution is always poorer than the probe radius. To achieve 10Å resolution at 5kV (including non-local effects), we would require a probe radius of 5∽6 Å. At low voltages, we can no longer ignore the effects of chromatic aberration because of the increased ratio δV/V. The 3rd order spherical aberration is another major limiting factor. The optimized aperture should be calculated as


Author(s):  
M. Osumi ◽  
N. Yamada ◽  
T. Nagatani

Even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage, we did not usually operate in the conventional scanning electron microscope at low voltage because of the poor resolution, especially of bioligical specimens. However, the development of the “in-lens” field emission scanning electron microscope (FESEM) has led to marked inprovement in resolution, especially in the range of 1-5 kV, within the past year. The probe size has been cumulated to be 0.7nm in diameter at 30kV and about 3nm at 1kV. We have been trying to develop techniques to use this in-lens FESEM at low voltage (LVSEM) for direct observation of totally uncoated biological specimens and have developed the LVSEM method for the biological field.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Sign in / Sign up

Export Citation Format

Share Document