An Instantaneous Impact Point Guidance for Rocket with Aerodynamics Control

Author(s):  
Ki-Wook Jung ◽  
Chang-Hun Lee ◽  
Junseong Lee ◽  
Sunghyuck Im ◽  
Keejoo Lee ◽  
...  
Keyword(s):  
Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 398
Author(s):  
Jesus Gonzalez-Trejo ◽  
Cesar A. Real-Ramirez ◽  
Jose Raul Miranda-Tello ◽  
Ruslan Gabbasov ◽  
Ignacio Carvajal-Mariscal ◽  
...  

In vertical continuous casting machines the liquid steel from the tundish is poured into the mold through the Submerged Entry Nozzle (SEN). The shape and direction of the SEN exit jets affect the liquid steel dynamics inside the mold. This work quantifies the effect of the SEN pool on the principal characteristics of the jets emerging from it, precisely, the shape, the spread angles, and the mold impact point. Experimental and numerical simulations were carried out using a SEN simplified model, a square-shaped bore nozzle with square-shaped outlet ports whose length is minimal. These experiments showed two well-defined behaviors. When a single vortex dominates the hydrodynamics inside the simplified SEN, the exit jets spread out and are misaligned about the mold’s central plane. On the contrary, when the inner flow pattern shows two vortexes, the exit jets are compact and parallel to the mold wide walls. The measured difference on the jet’s falling angles is 5°, approximately, which implies that in an actual casting machine, the impingement point at the narrow mold wall would have a variation of 0.150 m. This hydrodynamic analysis would help design new SENs for continuous casting machines that improve steel quality.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3426 ◽  
Author(s):  
Eugenio Marino-Merlo ◽  
Andrea Bulletti ◽  
Pietro Giannelli ◽  
Marco Calzolai ◽  
Lorenzo Capineri

The structural health monitoring (SHM) of critical structures is a complex task that involves the use of different sensors that are also aimed at the identification of the location of the impact point using ultrasonic sensors. For the evaluation of the impact position, reference is often made to the well-known triangulation method. This method requires the estimation of the differential time of arrival (DToA) and the group velocity of the Lamb waves propagating into a plate-like structure: the uncertainty of these two parameters is taken into consideration as main cause of localization error. The work proposes a simple laboratory procedure based on a set-up with a pair of sensors that are symmetrically placed with respect to the impact point, to estimate the uncertainty of the DToA and the propagation velocity estimates. According to a theoretical analysis of the error for the impact position, the experimental uncertainties of DToA and the propagation velocity are used to estimate the overall limit of the SHM system for the impact positioning. Because the error for the DToA estimate depends also on the adopted signal processing, three common methods are selected and compared: the threshold, the correlation method, and a likelihood algorithm. Finally, the analysis of the positioning error using multisensory configuration is reported as useful for the design of the SHM system.


2019 ◽  
Vol 4 (5) ◽  

In 2018 and 2019, the Arctic ice volume was increasing due to the reduction of SN1006 and V606 Aquilae heat delivering incoming debris stream particles or a decrease in strength. When the volume of ice on our planet was increasing in 2018-19, the planet was impacted by the new heat source of planetary nebula, PN, NGC 40. Currently the strength of PN NGC 40 is overcoming the loss of strength of the SN 1006 and V606 Aquilae and the Arctic ice volume started decreasing in March 2019. Particular longitude locations moving eastward from the initial impact point of PN NGC 40 show the effects of the PN NGC 40 hotspot passing over their locations. Shipping time through the Northeast Passage will increase for 2019 and for years thereafter. The ten-year measles outbreak that occurred from 1981 to 1991 will repeat for the period 2019 to 2029.


2019 ◽  
Vol 485 (3) ◽  
pp. 361-365
Author(s):  
A. A. Spivak ◽  
S. A. Riabova

Based on the Chelyabinsk (February 13, 2013) and Lipetsk (June 21, 2018) events, disturbances in the Earth's geomagnetic field, which were induced by the fall of these meteorites, were studied. Based on the data provided by geomagnetic observatories of the INTERMAGNET network and the mid-latitude Mikhnevo geophysical observatory (IDG RAS), it was established that the fall of meteorites through the Earth's atmosphere, in general, induces geomagnetic disturbances of up to 5 nT at distances up to 2700 km from the impact point of a cosmic body; the maximum effect is reached with a delay time ranging from ~5 to ~10 min, and the duration of the period of the induced geomagnetic field disturbances varies from ~5 to ~20 min. The estimation dependencies of the amplitude and duration of induced geomagnetic disturbances from a distance from the meteorite impact points are proposed.


2016 ◽  
Vol 54 (6) ◽  
pp. 797
Author(s):  
Nguyen Thai Dung ◽  
Nguyen Duc Thuyen

The motion of the underwater projectile with cavity effect including two motions: the projectile moves in the forward direction, center of mass of the projectile rotation around its nose makes tail of the projectile impacts on the cavity wall. According to, the impact forces occur, they include the drag force at its none, the impact force at impact point. The paper studies the forces occur on during motion of the underwater cavity projectile. Added, this paper considers the effect of the length and distributive projectile to the magnitude of impact force and the drag force of the underwater cavity projectile.


2002 ◽  
Vol 6 (4) ◽  
pp. 283-294 ◽  
Author(s):  
Oliver Montenbruck ◽  
Markus Markgraf ◽  
Wolfgang Jung ◽  
Barton Bull ◽  
Wolfgang Engler

Sign in / Sign up

Export Citation Format

Share Document