scholarly journals Study on the Properties of Semi-Synthetic Motor Oil Castrol 10W-40 after Use in a Diesel Engine

2021 ◽  
Vol 15 (3) ◽  
pp. 432-437
Author(s):  
Taras Chervinskyy ◽  
◽  
Oleg Grynyshyn ◽  
Roman Prokop ◽  
Pavlo Shapoval ◽  
...  

The changes in operational and physico-chemical properties of original and used semi-synthetic motor oil Castrol 10W-40 before and after its use in a diesel engine have been investigated. Derivatographic studies were carried out to examine a thermal stability; IR spectroscopy was used to confirm the presence of oil aging products. The composition of the inorganic part of the studied semi-synthetic oils was established by X-ray fluorescence analysis.

2013 ◽  
Vol 832 ◽  
pp. 589-595 ◽  
Author(s):  
N.A. Edama ◽  
A. Sulaiman ◽  
K.H. Ku Hamid ◽  
M.N. Muhd Rodhi ◽  
Mohibah Musa ◽  
...  

This study analyzed the effects of sulphuric acid (H2SO4) treatment on pysico-chemical properties and morphological changes of clay obtained from Sg. Sayong, Perak. The clay was ground and sieved to <150μm and treated with different concentrations of H2SO4. The treatment was completed by refluxing the clay with different concentration of H2SO4 (1M, 5M and 10M ) at 100 °C for 4 hours and followed by calcination at 500 °C for 1 hour. The physic-chemical properties and morphological changes of the untreated and treated clay were compared using Surface Area Analyser, X-Ray Diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), X-Ray Diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that acid treatment of 5M increased the surface area from 25 m2/g to 75 m2/g and the pore volume increased from 0.1518 cc/g to 0.3546 cc/g. The nanopore size of the clay decreased from 24.8 nm to 19.4 nm after treated with acid. This can be explained due to the elimination of the exchangeable cations and generation of microporosity. The results of XRF showed SiO2 increased from 58.34% to 74.52% and Al2O3 reduced from 34.6% to 18.31%. The mineral oxides such as Fe2O3, MgO, CaO, K2O and TiO2 also reduced. This concluded that H2SO4 treatment has led to significant removal of octahedral Al3+, Fe3+ cations and other impurities. In conclusion, this study showed the physico-chemical properties and morphology of Sayong clay were improved once treated with H2SO4 and therefore suggests better supporting material for enzyme immobilization.


2019 ◽  
Vol 60 (11) ◽  
pp. 85-92
Author(s):  
Nikita A. Panurin ◽  
◽  
Natalya Yu. Isaeva ◽  
Ekaterina B. Markova ◽  
Tatiana F. Sheshko ◽  
...  

Carrying out heterogeneous acid catalysis with the use of heteropoly compounds has received considerable attention due to the great economic and environmental benefits. In spite of this, its industrial application is limited as there are difficulties in catalyst regeneration (settling) caused by its relatively low thermal stability. The aim of present work was to search and select catalysts related to the class of heteropoly compounds for propane cracking, to test the selectivity of the prosses as well as to discuss possible approaches for solving the problem of catalyst deactivation, that can contribute to achieve stable characteristics of solid heteropoly catalysts. Among these approaches are: the development of new catalysts with high thermal stability, the modification of catalysts to promote coke combustion, the inhibition of coke formation on heteropoly compound catalysts during the process, carrying out the reactions in supercritical media and also the cascade reactions using a multifunctional heteropoly catalyst. The obtained catalyst was also studied by physicochemical methods to get deep knowledge about which features of these compounds influence on the catalytic activity. A highly active and selective catalyst for ammonium octomolybdenocobaltate(II) ammonium (NH4)2[Co(H2O)4]2[Mo8O27]∙6H2O was synthesized for cracking associated petroleum gases. The qualitative, quantitative, and structural composition as well as the specific surface area of the obtained catalyst was established by the methods of X-ray diffraction, X-ray phase and fluorescence analysis. It was revealed that ammonium octomolybdenocobaltate(II) crystallizes in a triclinic syngony with cell parameters: а = 8.6292(9) Å b = 9.4795(10) Å c = 12.2071(13) Å α = 104.326(2)° β = 109.910(2)° γ = 100.820(2)°.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
P. G. Rouxhet ◽  
N. Mozes

The thermodynamic approach of adhesion and DLVO theory are complementary to predict initial bacterial adhesion; the interplay between short- and long-range forces, respectively, may be due to surface roughness. Due to the influence of electrical double layer interactions, adhesion can be promoted by treatments leading to modification of the cell or support surface properties. Adhesion is influenced by cell-cell interactions, by the cpresence of polymer molecules on the surface and by the composition of the medium. X-ray photoelectron spectroscopy can be applied to determine the elemental composition of the surface of microorganisms; some information on the chemical functions can also be obtained. The surface composition is related to physico-chemical properties which play a determining role in adhesion and flocculation, in particular the hydrophobicity and the zeta potential.


2020 ◽  
Vol 869 ◽  
pp. 61-68
Author(s):  
Egor A. Bersenev ◽  
Alina Maryasevskaya ◽  
Evgenii V. Komov ◽  
Denis V. Anokhin ◽  
Dimitri A. Ivanov

In the present paper we study the effect of complexation in linear negatively charged polyelectrolytes with different alkali ions. With combination of IR-spectroscopy, X-ray diffraction and nanocalorimetry, we attempted to explain unusual solubility, crystallinity and thermal stability of these polymers. The increase of thermal stability and insolubility in water in series of semi-crystalline polysalts as K+ ≤ H+ <Na+ was explained by effectiveness of formation of chelating complex. Insoluble in water sodium salt shows the highest thermal stability of crystal phase up to . In contrast, well soluble in water amorphous lithium salt does not self-organize in chelating complex and is presented in ionic form.


2017 ◽  
Vol 864 ◽  
pp. 48-53
Author(s):  
Ahmad Fairoz Aziz ◽  
Khuzaimah Nazir ◽  
S.F. Ayub ◽  
N.I. Adam ◽  
Muhd Zu Azhan Yahya ◽  
...  

0.5 wt.% of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) was introduced into polymer electrolytes based on 30% poly(methyl-methacrylate) grafted natural rubber (MG30) in order to reduce the aging factor of MG30. The polymer electrolyte without 6PPD was used as control. All samples were prepared by using solution cast techniques. The effect of 6PPD in the electrolytes was analysed by using TGA, DSC and FTIR. TGA and DSC results revealed the thermal stability of MG30 electrolytes with 6PPD have higher thermal stability but lower glass transition temperature value. FTIR studies confirmed the existence of LiTF in the sample and prove the occurrence of polymer-salt complexation. Deconvolution techniques analysis on FTIR spectra shows the electrolyte sample with 6PPD display more ion dissociation which reflects to higher ionic conductivity.


2019 ◽  
Vol 9 (13) ◽  
pp. 2598 ◽  
Author(s):  
M. J. Hernández-Rodríguez ◽  
R. Santana Rodríguez ◽  
R. Darias ◽  
O. González Díaz ◽  
J. M. Pérez Luzardo ◽  
...  

In this study, mortar specimens were prepared with a cement:sand:water ratio of 1:3:0.5, in accordance with standard EN196-1. Portland CEM I 52.5 R grey (G) and white (W) cements were used, together with normalised sand and distilled water. Different amounts of TiO2 photocatalyst were incorporated in the preparation of the mortar samples. The effect of the addition of TiO2 was studied on mechanical properties of the mortar and cement including compressive and flexural strength, consistency (the flow table test), setting time and carbonation. Characterization techniques, including thermogravimetry, mercury porosimetry and X-ray diffraction spectroscopy (XRD), were applied to study the physico-chemical properties of the mortars. It was shown that adding the photocatalyst to the mortar had no negative effect on its properties and could be used to accelerate the setting process. Specimen photoactivity with the incorporated photocatalyst was tested for NOx oxidation in different conditions of humidity (0% RH and 65% RH) and illumination (Vis or Vis/UV), with the results showing an important activity even under Vis radiation.


Author(s):  
Agnieszka Sidorowicz ◽  
Qaisar Maqbool ◽  
Piotr Kachlicki ◽  
Gregory Franklin

We report on the synthesis of highly homogenous, oval shaped and ultra-small organometallic Fe2O3-nanostructures (OM-Fe2O3-NS) using H.&nbsp;perforatum&nbsp;leaf extract. Analysis of extracts before and after the synthesis of OM-Fe2O3-NS by ultra-performance liquid chromatography-diode array detection coupled with mass spectrometry (UPLC-DAD-MS) has revealed the active participation of&nbsp;quinic acid, neo-chlorogenic acid, epicatechin, quercetin 3'-malonylglucoside, and hyperforin in the formation of metal organic framework (MOF). OM-Fe2O3-NS were thoroughly investigated for their physico-chemical properties using Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), NanoDrop Ultraviolet and visible spectroscopy (UV) and Thermo-gravimetric analysis (TGA). Our results show that H.&nbsp;perforatum secondary metabolites have got a great potential in engineering the next-generation ultra-smart materials.


1988 ◽  
Vol 43 (5) ◽  
pp. 611-615 ◽  
Author(s):  
T. Sogo ◽  
J. Romero ◽  
A. Sousa ◽  
A. de Blas ◽  
M. L. Durán ◽  
...  

Abstract The electrochemical synthesis and physico-chemical properties of neutral zinc(II) complexes of bidentate Schiff bases derived from salicylaldehydes are presented together with the X-ray structure of bis[N-(4-methylphenyl)salicylaldiminato]zinc(II). The crystal is monoclinic, a = 21.877(3), b = 8.801(2), c = 12.027(5) Å, β = 96.55(3)°, space group C2/c. The complex is a monomer, and the zinc atom is tetrahedrally coordinated.


2016 ◽  
Vol 87 (10) ◽  
pp. 1192-1202 ◽  
Author(s):  
Toty Onggar ◽  
Gosbert Amrhein ◽  
Anwar Abdkader ◽  
Rolf-Dieter Hund ◽  
Chokri Cherif

High-performance yarns such as aramid fibers are nowadays used to reinforce composite materials due to their advantageous physico-chemical properties and their low weight. They are also resistant to heat and fire. Para-aramid filament yarns (p-AFs) wound on a cylindrical dyeing package have been silvered successfully by means of a newly developed wet-chemical filament yarn metallization process on a laboratory scale. The surface morphology of untreated and silvered p-AF was determined by means of scanning electron microscopy. The chemical structure of the surfaces (contents of carbon, oxygen, nitrogen and silver) was determined by means of energy-dispersive X-ray spectroscopy (EDX). The eliminated and newly formed groups of p-AF before and after silvering were detected by infrared spectroscopy (Fourier transform—attenuated total reflectance). After metallization, the silver layer thickness, the mass-related silver content and washing and rubbing fastness were assessed. Furthermore, textile-physical examinations concerning Young's modulus, elongation at break and electrical conductivity were performed. Subsequently, the electrically conductive p-AFs were integrated in thermoset composite materials reinforced by glass fibers and para-aramid.


Sign in / Sign up

Export Citation Format

Share Document