scholarly journals Stiffness and strength of a semi-regular lattice

2017 ◽  
Vol 50 (3) ◽  
pp. 137-140
Author(s):  
Tomas Their ◽  
Luc St-Pierre

Honeycombs and other lattice materials have the advantage that their topology can be designed to achieve unique combinations of properties, such as high strength at low density.  The work presented here is exploratory in nature: we investigated the mechanical properties of a two-dimensional lattice and compared its performances to other topologies.  Analytical expressions for the uniaxial stiffness and compressive strength were developed and validated against Finite Element simulations.  The results showed that the lattice considered is stiffer and stronger than the diamond lattice, and has a higher resistance to elastic buckling than the triangular lattice.  

2020 ◽  
Vol 1002 ◽  
pp. 627-635
Author(s):  
Besma M. Fahad ◽  
Baraa M. Matlik

The polymer-cement composites have special specifications, high strength compared to their low density, satisfactory deformability, deterioration resistance, tailored design. This enables the construction of new elements and the structural recovery of the existing parts made of traditional materials. two sets of mixtures were prepared that consist of mortar and polymer to produce the polymer-mortar composites were cured at room temperature and post-cure at 50 ͦ C. The set includes mortar (cement-sand) without water. The polymer was epoxy which is added to the mortar after mixing the hardener with resin. Set consists of the proportion of polymer (15, 20 and 30%).The effect of the polymer was studied on both sets by computing the density also measuring the hardness, compressive strength and flexural strength of specimens. The addition of polymer showed an improvement in these properties and post-cure have improvement properties .the lowest percent of the polymer showed The highest results were density 1133.3 kg/m3, the hardness of composites was 97.28 shore D. the compressive strength was about 100.816 MPa and the value of flexural strength was about 29.418 MPa.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2018 ◽  
Vol 25 (6) ◽  
pp. 1039-1058 ◽  
Author(s):  
Sumit Das Lala ◽  
Ashish B. Deoghare ◽  
Sushovan Chatterjee

AbstractThe inherent properties of bio-composites such as biodegradability, environment friendly, low cost of production, high strength and durability make them a suitable replacement to traditional materials such as glass and nylon. Bio-polymers are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resistance and ease of manufacturing complex shapes. This paper aims toward a comprehensive study on polymer bio-composites. The review mainly focuses on types of reinforcements such as natural fibers, seed shells, animal fibers, cellulose, bio-polymers, bio-chemicals and bioceramics which enhance the mechanical properties, such as tensile strength, compressive strength, flexural strength, Young’s modulus and creep behavior, of the composites. The pertinent study carried out in this review explores an enormous potentiality of the composites toward a wide variety of applications.


2020 ◽  
Vol 330 ◽  
pp. 01047
Author(s):  
Toufik Boubekeur ◽  
Bensaid Boulekbache ◽  
Mohamed Salhi ◽  
Karim Ezziane ◽  
EL.Hadj Kadri

This paper presents the experimental results of a wide research program, tending to determine the hydration mechanism, mechanical properties and the durability performance of ternary cement containing limestone powder and slag. The limestone powder increase the hydration at early ages inducing a high strength at, but it can reduce the later strength due to the dilution effect. On the other hands, Slag (S) contributes to increase the compressive strength at later ages. Hence, at medium blended cement (OPC-LP-S) with better performance could be produced. Results show at later age the Slag is very effective in producing ternary blended cements with similar on higher compressive strength than the ordinary Portland cement at 28 and 90 days. For durability, the incorporation of the slag into the cement containing limestone powder improves remarkably resistance to attack by acids and sulfates and it has been found that the durability of the cements never depends on the mechanical strength.


2012 ◽  
Vol 174-177 ◽  
pp. 1406-1409 ◽  
Author(s):  
Hong Fang Li ◽  
Li Guo ◽  
Yi Xia

The mechanical properties of concretes containing super fine mineral admixtures such as limestone powder, titanium slag, lithium slag and silica ash have been investigated by compression tests. It was found that 10% limestone powder used in cocncrete is beneficial to compressive strength, it reaches 111Mpa after 28 days curing. The optimum mixing amounts of titanium slag, lithium slag and silica ash are 20%, 10% and 10%, respectively. All their 28d compressive strengths exceed 100MPa, reach super-early and super-high strength concrete level. By introducing mineral admixures into concrete, the cement consumption in concrete can be greatly reduced.


Sign in / Sign up

Export Citation Format

Share Document