scholarly journals A Study on Technical and PM Emission Characteristics on Diesel Engines using Biodiesel Based Palm Oil

2020 ◽  
Vol 5 (2) ◽  
pp. 151-154
Author(s):  
Van Viet Pham

The transport industry is facing problems such as the exhaustion of fossil fuels and the threat of pollution from emissions from internal combustion engines. The use of alternative fuels is considered as one of the effective solutions to address the pressure on fuel prices and environmental pollution. Using biofuels is considered an emerging solution to ensure energy security in transportation and environment friendliness. Palm oil-based biodiesel is a relatively abundant fuel source and is compatible with traditional diesel engines with little change to the engine structure. The paper focuses on the possibility of using biodiesel derived from palm oil with the volume ratio of 5%, 10% and 15% on Vikyno EV2600 engine. Thereby, it will analyze and evaluate the technical features and emission level of the engine compared to traditional diesel fuel. In addition, this study is also worth the impact of the blend ratio of palm oil-based biofuel with diesel to the PM emission level of the test engine.

2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


2011 ◽  
Vol 11 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Sri Hartoyo ◽  
Eka Intan K.P. ◽  
Novindra Novindra ◽  
Hastuty Hastuty

This paper attempts to examine the impact of rising fossil fuel prices on the increasing impact on the demand of alternative fuels (biofuels), and its impact on food availability in Indonesia. An econometric model using simultaneous equations is employed. An increase in world crude oil price for 0,192 percent caused the price of real Indonesian palm oil export raised by 10,64 percent. Consequently, a larger biodiesel production is needed to meet their crease of world's consumer demand for biodiesel. Also, with the increase in real export price of Indonesian palm oil, it will encourage palm oil producers to push their export volume. Indonesian palm oil exporter expected to increase by 6,37 percent to finally push the domestic CPO price increase for 1,85 percent. Rising domestic oil prices are causing oil demand in the palm oil industry to decline by 0,49 percent and in the end resulting in the decline of palm oil production by 1,56 percent.


2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


2017 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Anh Tuan Hoang

Pure vegetable oils have the greatest promise for alternative fuels for internal combustion engines beside the depletion of conventional petroleum resources. Among various possible options, pure vegetable oils present promising of greener air substitutes for fossil fuels. Pure vegetable oils, due to the agricultural origin, liquidity, ready availability, renewability, biodegradability are able to reduce the CO2 emissions in the atmosphere. Also, in Vietnam, pure vegetable oils such as soybean oil (SoO100), coconut oil (CO100) and sunflower oil (SuO100) are available. The paper presents the results of using heated pure vegetable oils for diesel engine D243 with power of 80 hp (58.88) kW. The results of determining the power (Ne), specific fuel consumption (SFC) and efficiency (n) are used to evaluate the performance of engine. The results show that, the engine power (Ne) is 10%-15% lower, the SFC of engine D243 using pure vegetable oils is 3%-5% higher and the η is 2.5%-6.2% lower compared to diesel oil (DO). Among the pure vegetable oils, the best performance results for D243 diesel engine are obtained from heated pure sunflower oil up to 135oC.


2013 ◽  
Vol 14 (2) ◽  
pp. 218-224

Cement production is an energy-intensive process. Utilisation of fossil fuels is common practice in the cement industry around the world. Alternative fuel substitution rates increase every year. More specifically, 18 % of the fuel used by the European cement industry in 2006 consists of alternative fuels. This study aims to investigate the prospects for the partial replacement of conventional fossil fuels currently used in the TITAN cement factory in Thessaloniki, Greece, with alternative fuels, focusing on the impact of alternative fuel use on the emissions of air pollutants from co-incineration operations. Air emissions were estimated for both the conventional fuel and mixtures of conventional fuel with alternative fuels, based on emission factors found in the literature but also using the measurements conducted by TITAN in 2010. Emission estimates indicate that legislative limit values for all pollutants are not exceeded. Based on the emission estimates and measurements in the flue gas, the dispersion of the plume around the factory has been described with an appropriate numerical simulation model. Results suggest that the factory’s contribution to the air pollution levels in the surrounding area is very low for most regulated pollutants.


2020 ◽  
Author(s):  
Rehab Metwally ◽  
hassan Abu Hashish ◽  
Haitham Abd El-Samad ◽  
Mostafa Awad ◽  
Ghada Kadry

Abstract Background: The world depends almost on fossil fuels. This leads to depletion of oil and an increase in environmental pollution. Therefore, the researchers search to find alternative fuels. Waste cooking oil (WCO) was selected as feedstock for biodiesel production to eliminates the pollution problems. The agricultural waste is very big and without cost, this leads to the use of the rice straw in preparing a catalyst for biodiesel production. Results: The reusability of the acidic catalyst confirmed that the conversion efficiency was high until after 8 cycles of the production. The highest conversion efficiency of the converting WCO extended to 90.38% with 92.5% maximum mass yield and methyl ester content 97.7% wt. at the optimized conditions. The result was indicating that B15 is the best blend for thermal efficiency and specific fuel consumption. All emission concentrations decrease with increasing the engine load, especially for B15 fuels compared to the diesel oil.Conclusion: The novelty of this paper is assessing the methyl esters from the local WCO as an alternative fuel for diesel engines using a heterogeneous catalyst based on the agricultural waste. The performance of the diesel engines and its exhaust emissions have been experimentally investigated with the produced biodiesel of WCO as a blend (B10, B15, and B20) compared to the diesel.


Author(s):  
Kathleen Araújo

The discovery of oil in Pennsylvania in 1859 was a relatively inconspicuous precursor to what would become an epic shift into the modern age of energy. At the time, the search for “rock oil” was driven by a perception that lighting fuel was running out. Advances in petrochemical refining and internal combustion engines had yet to occur, and oil was more expensive than coal. In less than 100 years, oil gained worldwide prominence as an energy source and traded commodity. Along similar lines, electricity in the early 1900s powered less than 10% of the homes in the United States. Yet, in under a half a century, billions of homes around the world were equipped to utilize the refined form of energy. Estimates indicate that roughly 85% of the world’s population had access to electricity in 2014 (World Bank, n.d.b). For both petroleum and electricity, significant changes in energy use and associated technologies were closely linked to evolutions in infrastructure, institutions, investment, and practices. Today, countless decision-makers are focusing on transforming energy systems from fossil fuels to low carbon energy which is widely deemed to be a cleaner, more sustainable form of energy. As of 2016, 176 countries have renewable energy targets in place, compared to 43 in 2005 (Renewable Energy Policy Network for the 21st Century [REN21], 2017). Many jurisdictions are also setting increasingly ambitious targets for 100% renewable energy or electricity (Bloomberg New Energy Finance [BNEF], 2016). In 2015, the G7 and G20 committed to accelerate the provision of access to renewables and efficiency (REN21, 2016). In conjunction with all of the above priorities, clean energy investment surged in 2015 to a new record of $329 billion, despite low, fossil fuel prices. A significant “decoupling” of economic and carbon dioxide (CO2) growth was also evident, due in part to China’s increased use of renewable energy and efforts by member countries of the Organization for Economic Cooperation and Development (OECD) to foster greater use of renewables and efficiency (REN21, 2016).


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


Author(s):  
Mário Costa ◽  
Bruno Pizziol ◽  
Miguel Panao ◽  
André Silva

The growth of the aviation sector triggered the search for alternative fuels and continued improvements in thecombustion process. This work addresses the technological challenges associated with spray systems and theconcern of mixing biofuels with fossil fuels to produce alternative and more ecological fuels for aviation. This workproposes a new injector design based on sprays produced from the simultaneous impact of multiple jets, using anadditional jet of air to assist the atomization process. The results evidence the ability to control the average dropsize through the air-mass flow rate. Depending on the air-mass flow rate there is a transition between atomizationby hydrodynamic breakup of the liquid sheet formed on the impact point, to an aerodynamic breakup mechanism,as found in the atomization of inclined jets under cross-flow conditions. The aerodynamic shear breakupdeteriorates the atomization performance, but within the same order of magnitude. Finally, our experiments showthat mixing a biofuel with a fossil fuel does not significantly alter the spray characteristics, regarded as a stepfurther in developing alternative and more ecological fuels for aero-engines.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4737


2017 ◽  
Vol 2 (4) ◽  
pp. 10 ◽  
Author(s):  
Rahmath Abdulla ◽  
Warda Abdul Ajak ◽  
Siti Hajar ◽  
Eryati Derman

Currently the resources for fossil fuels are depleting together with increase in fuel prices. This has urged the need for cheaper alternative fuels especially biofuels. The production of the most common liquid biofuel which is bioethanol using immobilized yeast cells is an approach taken to increase its demand in the world’s market. There are various methods for the immobilization of yeast cells; however before they can be applied in the industry the stability of the immobilization technology must be investigated. This research aims to study the stabilities of immobilized S. cerevisiae in calcium alginate and carrageenan beads for bioethanol production. The S. cerevisiae was immobilized in calcium alginate and carrageenan beads using entrapment method. Next, screening for the optimal concentration of sodium alginate and semi refined carrageenan matrices were determined by employing fermentation and bioethanol quantification using GC-MS. Concentrations of 2% (w/v) calcium alginate and 2% (w/v) semi refined carrageenan beads were identified to produce the highest bioethanol yield which were 0.286 g/mL and 0.065 g/mL respectively. The two beads were then chosen to be tested in various stability studies with respect to bioethanol production such as storage stability, reusability, pH, thermaland permeability test. It was found out that a concentration of 2% (w/v) calcium alginate beads were more stable as immobilization matrix for S. cerevisiae  as compared to 2% (w/v) semi refined carrageenan.


Sign in / Sign up

Export Citation Format

Share Document