scholarly journals Waste Management of Spent Petroleum Refinery Catalyst

2020 ◽  
Vol 5 (8) ◽  
pp. 938-947
Author(s):  
Isam Al-Zubaidi ◽  
Congning Yang

 Petroleum refinery uses many catalysts such as hydroprocessing catalyst HPC, fluid catalytic cracking catalyst FCCC, reforming catalyst RC, etc. During the refining processes, the catalysts are deactivated; the spent catalysts are regarded as hazardous toxic materials due to heavy metals, coke, other poisonous compounds, and hydrocarbons. Huge amount of spent catalysts SC is generated which is expected to increase with expansion capacities of available refineries processes. This paper is reviewing the mechanisms of refining catalyst and the deactivation processes and focusing on spent catalysts management. Management of spent catalyst includes four main options; select the catalysts which reduce the generation of SC by switching to more environment friendly, longer lifetime and less toxic catalyst during the refining process; regenerate the SC; and precious metal recovery should be explored and reuse for other applications. The selection can be based on many factors such as safety, environment, mobility, etc. 

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2289
Author(s):  
Haihui Fu ◽  
Yan Chen ◽  
Tingting Liu ◽  
Xuemei Zhu ◽  
Yufei Yang ◽  
...  

Fluid catalytic cracking (FCC) spent catalysts are the most common catalysts produced by the petroleum refining industry in China. The National Hazardous Waste List (2016 edition) lists FCC spent catalysts as hazardous waste, but this listing is very controversial in the petroleum refining industry. This study collects samples of waste catalysts from seven domestic catalytic cracking units without antimony-based passivation agents and identifies their hazardous characteristics. FCC spent catalysts do not have the characteristics of flammability, corrosiveness, reactivity, or infectivity. Based on our analysis of the components and production process of the FCC spent catalysts, we focused on the hazardous characteristic of toxicity. Our results show that the leaching toxicity of the heavy metal pollutants nickel, copper, lead, and zinc in the FCC spent catalyst samples did not exceed the hazardous waste identification standards. Assuming that the standards for antimony and vanadium leachate are 100 times higher than that of the surface water and groundwater environmental quality standards, the leaching concentration of antimony and vanadium in the FCC spent catalyst of the G set of installations exceeds the standard, which may affect the environmental quality of surface water or groundwater. The quantities of toxic substances in all spent FCC catalysts, except those from G2, does not exceed the standard. The acute toxicity of FCC spent catalysts in all installations does not exceed the standard. Therefore, we exclude “waste catalysts from catalytic cracking units without antimony-based passivating agent passivation nickel agent” from the “National Hazardous Waste List.”


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2732
Author(s):  
Baishun Zhao ◽  
Chuansheng Wang ◽  
Huiguang Bian

Spent fluid catalytic cracking catalysts (FCC catalysts) produced by the petrochemical industry are considered to be environmentally hazardous waste, and precious metals and heavy metals deposited on the surface make them difficult to treat. Even so, these catalysts retain some of their activity. The pyrolysis of waste tires is considered to be one of the most effective ways to solve the fossil fuel resource crisis, and this study attempts to catalyze the pyrolysis of waste tires using spent catalysts to increase the value of both types of waste. FCC catalysts reduced the activation energy (E) of waste tire pyrolysis. When the catalyst dosage was 30 wt.%, the E of tread rubber decreased from 238.87 kJ/mol to 181.24 kJ/mol, which was a 19.94% reduction. The E of the inner liner decreased from 288.03 kJ/mol to 209.12 kJ/mol, a 27.4% reduction. The spent catalyst was more effective in reducing the E and solid yield of the inner liner made of synthetic rubber. It should be emphasized that an appropriate increase in the heating rate can fully exert the selectivity of the catalyst. The catalyst could also be effectively used twice, and the optimum ratio of catalyst/waste tires was about 1/4.5. Compared with specially prepared catalysts, it is more cost-effective to use such wastes as a catalyst for waste tire pyrolysis.


2021 ◽  
Vol 3 (1) ◽  
pp. 177-187
Author(s):  
Neha Nagar ◽  
◽  
Himanshi Garg ◽  
Chandra Sekhar Gahan ◽  
◽  
...  

The present study aims for characterization and classification of five different spent petroleum refinery catalysts followed by metal recovery via bioleaching. The nomenclature given to the different spent catalyst (SC) is SC1, SC2, SC3, SC4 and SC5 collected from an Indian petroleum refinery. All spent catalysts were crushed and ground prior to their characterization by X-Ray Fluorescence for chemical composition followed by X-Ray Diffraction and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy for their mineralogy. Further, all five spent catalysts were classified based upon their chemical composition and mineralogy. Metal recovery from the spent catalysts was carried out by bioleaching by a mixed microbial consortium of iron and Sulphur oxidizing microorganisms. Most of the spent catalysts showed very significant metal recovery with respect to Ni, Cu, Cr, Mo, Zn, Sr and Ti. The study provides a possible metal recovery route via bioleaching for further testing and scaling up.


Author(s):  
Monica Dapiaggi ◽  
Marco Alloni ◽  
Riccardo Carli ◽  
Nicola Rotiroti ◽  
Giorgia Confalonieri

Abstract The paper presents a quick method for the quantification of nickel species in spent FFC catalysts; the quantification of known quantities NiO and $$\hbox{NiAl}_2\hbox{O}_{4}$$ NiAl 2 O 4 is first done in a matrix of fresh zeolite Y, and then in a complex matrix, similar to the one of a real spent catalyst. The method is carefully checked and the errors in the quantification are critically evaluated. After the validation of the method with known quantities of NiO, well below the law limit for direct re-use, a set of real spent catalysts (representative of a period of 12 months) is analysed. Graphic Abstract


2019 ◽  
Vol 19 (1) ◽  
pp. 21-30
Author(s):  
Arifudin Nur ◽  
Suryo Hapsoro Tri Utomo ◽  
M. Zudhy Irawan

Abstract Expansive soils have high swelling and shrinkage potentials, which may cause damage to road structures. Therefore, stabilization is required. One method of stabilization is to use lime and spent catalysts with the aim of increasing carrying capacity and reducing swelling. Spent catalyst is a petroleum processing waste and classified as pozzolanic material. The addition of lime and spent catalysts can increase the CBR value and reduce swelling of soils. The results of this study indicate that the maximum increase in soaked CBR and unsoaked CBR values occurred in soil mixtures with optimum lime content and 12% spent catalyst with 7 days of curing. While the soil mixture with optimum lime content and 12% spent catalyst, with 7 days of curing, is the best mixture that produces soaked CBR value of 49.67%, swelling of 0.15%, and plasticity index value of 11.97%, so the soil meets the requirements to be used as pavement subgrade. Keywords: expansive soil, stabilization, road structure, subgrade, road pavement  Abstrak Tanah ekspansif memiliki potensi pengembangan dan penyusutan yang tinggi, sehingga dapat menyebabkan kerusakan struktur jalan. Oleh sebab itu, perlu dilakukan stabilisasi. Salah satu metode stabilisasi adalah menggunakan kapur dan spent catalyst dengan tujuan meningkatkan kapasitas dukung dan menurunkan swelling. Spent catalyst merupakan limbah pengolahan minyak bumi dan termasuk bahan pozzolan. Penam-bahan kapur dan spent catalyst mampu meningkatkan nilai CBR dan mereduksi swelling. Hasil studi ini menunjukkan bahwa peningkatan maksimum nilai CBR soaked maupun CBR unsoaked terjadi pada campuran tanah dengan kadar kapur optimum dan 12% spent catalyst dengan peraman 7 hari. Sedangkan campuran tanah dengan kadar kapur optimum dan 12% spent catalyst, dengan peraman 7 hari, merupakan campuran terbaik yang menghasilkan nilai CBR soaked sebesar 49,67%, swelling sebesar 0,15%, dan nilai indeks plastisitas sebesar 11,97%, sehingga tanah memenuhi syarat untuk digunakan sebagai tanah dasar perkerasan jalan. Kata-kata kunci: tanah ekspansif, stabilisasi, struktur jalan, tanah dasar, perkerasan jalan


2019 ◽  
Vol 37 (11) ◽  
pp. 1127-1141 ◽  
Author(s):  
Sultan Majed Al-Salem ◽  
Achilleas Constantinou ◽  
Gary Anthony Leeke ◽  
Sanaa Hafeez ◽  
Tayeba Safdar ◽  
...  

Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This article reviews the practices that govern the management approaches utilized in the developed world for industrial spent catalysts. It critically assesses the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a strategy for a way forward based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed at length covering conventional methods of valuable metals and chemicals recovery (e.g., hydrometallurgical, solid–liquid and liquid–liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorization industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait.


2018 ◽  
Vol 792 ◽  
pp. 133-139 ◽  
Author(s):  
Toapanta Germania ◽  
Caterine Donoso ◽  
María José Cárdenas ◽  
Amón Bolívar ◽  
Vladimir Ortiz

Spent catalysts contain metals that have a high added value. From all metals, lanthanum has attracted a lot of attention due to the growing demand in the high-tech. The spent catalyst of the hydrotreatment unit is a material composed of lanthanum-enriched matrix of amorphous aluminosilicates. The experiment was carried out with a spent catalyst with a constant particle size of 90 μm. The treatments were obtained applying of two level factorial design to investigate the effect of following factors: temperature (20 - 60 °C), nitric acid concentration (3 - 6 M), leaching time (1 - 4 h) and percent solids (10 - 20 %). The research is carried out in two steps process: pretreatment of the catalyst and leaching with nitric acid. The leaching results show a yield of lanthanum of 99.44% using the following conditions: temperature (20 °C), nitric acid concentration (3M), leaching time (1 h), percent solids (20%) and 300 rpm. The principal analysis of the spent catalyst was carried out using the X-Ray Fluorescence (XRF) technique, 3.08%, while the percentage of lanthanum recovery in the extract, washing and refining was carried out using the Inductive Coupling Plasma (ICP) technique.


2019 ◽  
Vol 68 (5-6) ◽  
pp. 201-208
Author(s):  
Shu Qin Zheng ◽  
Ting Wang ◽  
Cheng Yang ◽  
Pei Qing Zhang ◽  
Si Cheng Liu

An adsorbent prepared from fluid catalytic cracking (FCC) spent catalyst fines and diatomite, and its adsorption of Cu2+, Zn2+, and Ni2+ ions were investigated. The adsorbent was characterized by XRD, SEM, and N2 adsorption-desorption techniques. The results showed that the specific surface area and pore volume of adsorbent increased with the increase in FCC spent catalyst fines. The influence factors on the adsorption of the adsorbents were studied. The suitable adsorption conditions were: pH value of 5.0, ratio of solid to liquid of 1 : 600 (g:ml), adsorption time of 4 h, room temperature. The adsorption of metal ions varied with the type of metal cations. The adsorption isotherms suggested that the sequence of the adsorption efficiency was Cu2+ > Zn2+ > Ni2+. The amount of Cu2+, Zn2+, and Ni2+ metal ion adsorbed onto the adsorbent was 49.17 mg g–1, 46.83 mg g–1, and 35.72 mg g–1, respectively. The adsorption data of Cu2+, Zn2+, and Ni2+ ions fitted well with the Freundlich adsorption isotherm model.


Sign in / Sign up

Export Citation Format

Share Document