scholarly journals Spontaneous outbreak of Yersinia enterocolitica infection and co-infection with Escherichia coli in black-tufted marmosets (Callithrix penicillata)

2021 ◽  
Vol 14 (3) ◽  
pp. 173-179
Author(s):  
Gisele Lemos ◽  
◽  
Bárbara Pires ◽  
Raffaella Mainardi ◽  
Roberta Chideroli ◽  
...  

Yersiniosis is a zoonotic bacterial disease that affects humans and animals, including primates. The aim of the study was to report one case of fatal Yersinia enterocolitica infection and two cases of co-infection with Escherichia coli in captive black tufted marmosets (Callithrix penicillata) in Apucarana, Paraná, south Brazil. The affected animals presented severe diarrhea and progressed to death. Gross examination showed multifocal to coalescing necrosis in the liver, mild diffuse hepatomegaly, mild diffuse necrotizing enteritis, moderate splenomegaly and focally extensive hyperemia of the leptomeninges. Microscopically, the liver lesions comprised multifocal areas of lytic necrosis with intralesional colonies of gram-negative coccobacilli, characterizing a severe, random, multifocal to coalescing necrotizing hepatitis. A moderate multifocal lymphocytic cholangiohepatitis, severe focally extensive mucosal necrosis in the small intestine, and mild multifocal lymphoplasmacytic leptomeningitis in the brain were observed. Two cases of co-infection by Y. enterocolitica and E. coli, and one case by Y. enterocolitica were confirmed through bacterial culture, biochemical characteristics and 16S rRNA. To the best of the author’s knowledge, it is the first report of an infection of Y. enterocolitica and co-infection with E. coli in black-tufted marmosets resulting in diarrhea, septicemia and death.

PEDIATRICS ◽  
1955 ◽  
Vol 16 (2) ◽  
pp. 215-227
Author(s):  
Merlin L. Cooper ◽  
Edward W. Walters ◽  
Helen M. Keller ◽  
James M. Sutherland ◽  
Hollis J. Wiseman

During an outbreak of epidemic diarrhea a new serotype of Escherichia coli: E. coli 0127:B8, was isolated from 44 of 145 infants and from 1 nurse among 82 adult personnel in attendance. Among the 44 infants whose rectal swab cultures were positive, 20 were in the first month of life, 16 were 2 to 6 months of age, and 6 were 7 to 12 months of age, a total of 42 being in the first year of life. Severe epidemic diarrhea associated with the presence of E. coli 0127:B8 was characterized by the sudden development of extreme abdominal distention among some of the infants; explosive onset of diarrhea and the presence of a pungent, musty, objectionable odor not noticed around other patients with diarrhea. E. coli 0127: B8 was isolated more frequently while the patients were having diarrhea. Neomycin® was used orally for the specific treatment of patients with diarrhea. The early dosage was small due to our caution in using a new antibiotic. Over the 4 months period of this study the dosage was gradually increased. The average dose was 40 mg./kg./day for the patients with positive cultures and 46 mg./kg./day for those with negative cultures. Of 22 patients with positive cultures, 12 who were treated with Neomycin® alone or in addition to other antibiotics continued to show the presence of E. coli 0127:B8 after Neomycin® therapy had been terminated; however, only 2 of these patients had recurrence of diarrhea, both having had negative cultures while receiving Neomycin®. The administration of Neomycin® to every infant on the 2 wards, regardless of clinical condition, was followed by a decreasing incidence of diarrhea and decreasing detection of E. coli 0127:B8. The dose of Neomycin® was 40 to 50 mg./kg./day. It is our feeling that Neomycin® administered orally was of definite clinical value therapeutically and prophylactically but in the dosage used was inadequate bacteriologically. Four deaths occurred among the 44 infants whose rectal swab cultures were positive for E. coli 0127:B8 and necropsy studies were made on each. A hemorrhagic enteritis was present in 3 infants and in the fourth infant the cause of death was a congenital heart condition. Death of 1 patient with negative rectal swab cultures may very likely be attributed to severe diarrhea. Sera from patients and personnel failed to show the presence of agglutinins for E. coli 0127:B8. in vitro sensitivity tests showed that the order of decreasing bactericidal effectiveness of 5 antibiotics for E. coli 027:B8 was polymyxin, Neomycin®, chloramphenicol, Achromycin®, and Terramycin®. All strains were resistant to dihydrostreptomycin and sodium sulfadiazine. Only the last strains isolated from 2 patients showed increased resistance to Neomycin®, four-and sixteenfold when compared with the first strains isolated from the same patients.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Tracy H. Hazen ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Yan Ge ◽  
Senlin Guo ◽  
Tao Liu ◽  
Chen Zhao ◽  
Duanhua Li ◽  
...  

ABSTRACT A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et  al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.


2003 ◽  
Vol 9 (5) ◽  
pp. 353-358 ◽  
Author(s):  
O. Sagdic ◽  
A. G. Karahan ◽  
M. Ozcan ◽  
G. Ozkan

Eighteen extracts of spices commonly consumed worldwide and grown naturally in Turkey were tested against twenty three bacterial strains to compare their antibacterial effects with eleven antibiotics. Eight pathogens and fifteen lactobacilli isolated from chick intestine were used as the test microorganisms. Pathogens (six different Staphylococcus aureus strains, Escherichia coli ATCC 25922 and Yersinia enterocolitica ATCC 1501) were grown in Nutrient broth and lactobacilli in MRS broth. Hop extracts formed inhibition zones against S. aureus strains of upto 36 mm. Inhibitory effects of hop extracts against S. aureuswere generally higher than that of erythromycin as antibiotic. Helichrysum compactum extract produced an inhibition zone of 23mm to E. coli ATCC 25922 and 26mm to Y. enterocolitica ATCC 1501. Helichrysum compactum extract inhibited the growth of Y. enterocolitica ATCC 1501 more than other spice extracts. While inhibition zones of these extracts against lactobacilli were found smaller than on S. aureus strains, inhibition zones of the same extracts against lactobacilli were found similar to those of E. coli ATCC 25922 and Y. enterocolitica ATCC 1501.


2012 ◽  
Vol 48 (No. 5) ◽  
pp. 126-132 ◽  
Author(s):  
M. Gulmez ◽  
A. Guven

The survival of Escherichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3 in traditional yogurt and kefir during fermentation, in ayran (a dairy beverage in Turkey), pasteurised (long-life) ayran, modified kefir (salted and diluted kefir) and pasteurised modified kefir during cold storage were investigated. Pasteurised samples were used to monitor the antibacterial effect of natural flora of yogurt and kefir during cold storage. Populations of all the strains were increased during fermentation, and thus pre-fermentation contamination appeared more rhisky than postfermentation contamination. Pasteurisation appeared not to be disaadventageous an application on the microbiological safety of the samples, neverthelessbiological benefits which may come from live microorganisms is lost. While E. coli O157:H7 and L. monocytogenes 4b survived for up to 21 days in all samples, Y. enterocolitica O3 survived only for 14 days in modified kefir. Yogurt microflora appeared to be more suppressive on the pathogens than that of kefir.


2008 ◽  
Vol 28 (10) ◽  
pp. 508-514 ◽  
Author(s):  
Tatiana Amabile de Campos ◽  
Gerson Nakazato ◽  
Eliana Guedes Stehling ◽  
Marcelo Brocchi ◽  
Wanderley Dias da Silveira

The clonal relationship among avian Escherichia coli strains and their genetic proximity with human pathogenic E. coli, Salmonela enterica, Yersinia enterocolitica and Proteus mirabilis, was determined by the DNA sequencing of the conserved 5' and 3'regions fliC gene (flagellin encoded gene). Among 30 commensal avian E. coli strains and 49 pathogenic avian E. coli strains (APEC), 24 commensal and 39 APEC strains harbored fliC gene with fragments size varying from 670bp to 1,900bp. The comparative analysis of these regions allowed the construction of a dendrogram of similarity possessing two main clusters: one compounded mainly by APEC strains and by H-antigens from human E. coli, and another one compounded by commensal avian E. coli strains, S. enterica, and by other H-antigens from human E. coli. Overall, this work demonstrated that fliC conserved regions may be associated with pathogenic clones of APEC strains, and also shows a great similarity among APEC and H-antigens of E. coli strains isolated from humans. These data, can add evidence that APEC strains can exhibit a zoonotic risk.


1992 ◽  
Vol 55 (11) ◽  
pp. 916-919 ◽  
Author(s):  
GUANG-HUA WANG

Inhibition and inactivation of five species of foodborne pathogens (Staphylococcus aureus, Escherichia coli, Yersinia enterocolitica, Listeria monocytogenes, and Salmonella typhimurium) by chitosan were studied. Nutrient broths were supplemented with 0, 0.5, 1.0, 1.5, 2.0, and 2.5% chitosan, adjusted to pH 6.5 or 5.5 with 2% acetic acid, and incubated at 30°C. The outgrowths of these bacteria were observed. At pH 6.5, in general, antibacterial activity of chitosan was relatively weak. The effectiveness of chitosan against S. aureus was greatest, followed by S. typhimurium, E. coli, and Y. enterocolitica. As the concentration of chitosan increased, the effectiveness of chitosan against these four species of pathogens also increased. No inhibition of L. monocytogenes by chitosan occurred. At pH 5.5, presence of chitosan inactivated these pathogens except that 0.5% chitosan did not affect the growth of S. typhimurium. Thus, the antibacterial activity of chitosan was stronger at pH 5.5 than at pH 6.5.


2003 ◽  
Vol 9 (5) ◽  
pp. 365-369 ◽  
Author(s):  
M. Gulmez ◽  
A. Guven

The behaviour of three selected food-borne pathogens, E. coli O157: H7, L. monocytogenes 4b and Y. enterocolitica O3, added to fermented and pasteurised kefir was monitored. Populations of the three strains increased in one-day-fermented kefir, but only E. coli O157: H7 increased in two-days-fermented kefir during fermentation. None of the strains grew during cold storage (4 1 C), although E. coli O157: H7 and L. monocytogenes 4b survived up to 21 days in all samples cold. Y. enterocolitica O3 was the most susceptible strain that was present in one-day-fermented kefir for at least 14 days. Twodaysfermented kefir samples were more acidic thanthose of one-day-fermented samples, but none of the samples was safe enough to create an environment to eliminate the pathogens.


2015 ◽  
Vol 78 (5) ◽  
pp. 912-920 ◽  
Author(s):  
ROBERT S. BARLOW ◽  
KATE E. McMILLAN ◽  
LESLEY L. DUFFY ◽  
NARELLE FEGAN ◽  
DAVID JORDAN ◽  
...  

Antimicrobial agents are used in cattle production systems for the prevention and control of bacteria associated with diseases. Australia is the world's third largest exporter of beef; however, this country does not have an ongoing surveillance system for antimicrobial resistance (AMR) in cattle or in foods derived from these animals. In this study, 910 beef cattle, 290 dairy cattle, and 300 veal calf fecal samples collected at slaughter were examined for the presence of Escherichia coli and Salmonella, and the phenotypic AMR of 800 E. coli and 217 Salmonella isolates was determined. E. coli was readily isolated from all types of samples (92.3% of total samples), whereas Salmonella was recovered from only 14.4% of samples and was more likely to be isolated from dairy cattle samples than from beef cattle or veal calf samples. The results of AMR testing corroborate previous Australian animal and retail food surveys, which have indicated a low level of AMR. Multidrug resistance in Salmonella isolates from beef cattle was detected infrequently; however, the resistance was to antimicrobials of low importance in human medicine. Although some differences in AMR between isolates from the different types of animals were observed, there is minimal evidence that specific production practices are responsible for disproportionate contributions to AMR development. In general, resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of AMR in bacteria from Australian cattle is likely a result of strict regulation of antimicrobials in food animals in Australia and animal management systems that do not favor bacterial disease.


2010 ◽  
Vol 78 (8) ◽  
pp. 3554-3559 ◽  
Author(s):  
Longkun Zhu ◽  
Donna Pearce ◽  
Kwang Sik Kim

ABSTRACT Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interaction with its receptor, the 67-kDa laminin receptor (67LR), and host signaling molecules including cytosolic phospholipase A2α (cPLA2α). In the present study, we showed that treatment with etoposide resulted in decreased expression of 67LR on HBMEC and inhibited E. coli invasion of HBMEC. Pharmacological inhibition of cysteinyl leukotrienes, lipoxygenated products of arachidonic acid released by cPLA2α, using montelukast (an antagonist of the type 1 cysteinyl leukotriene receptor) also inhibited E. coli invasion of HBMEC. E. coli penetration into the brain was significantly decreased by etoposide as well as by montelukast, and a combination of etoposide and montelukast was significantly more effective in inhibiting E. coli K1 invasion of HBMEC than single agents alone. These findings demonstrate for the first time that counteracting the HBMEC receptor and signaling molecule involved in E. coli invasion of HBMEC provides a novel approach for prevention of E. coli penetration into the brain, the essential step required for development of E. coli meningitis.


Sign in / Sign up

Export Citation Format

Share Document