scholarly journals ASSESSMENT AND COMPARISON OF MACHINE LEARNING ALGORITHM CAPABILITY IN SPATIAL MODELING OF DENGUE FEVER VULNERABILITY BASED ON LANDSAT IMAGE 8 OLI/TIRS

2021 ◽  
Vol 13 (2) ◽  
pp. 211
Author(s):  
Rahmat Azul Mizan ◽  
Prima Widayani ◽  
Nur Mohammad Farda

The spread of dengue fever in Indonesia has become a major health problem. Spatial modeling for the distribution of dengue fever vulnerability is an important step to support the planning and mitigation of dengue fever in Indonesia. This study aims to assess and compare the capability of two machine learning algorithms to create a spatial model of dengue fever vulnerability. The research was conducted in Baubau City, Southeast Sulawesi Province by taking 129 cases that occurred from 2015 to February 2016. In this study, the model was created using R software and machine learning algorithms including support vector machine (SVM) and random forest (RF). The six modeling variables involved include land use/cover, BLFEI, NDVI, LST, rainfall and humidity extracted from Landsat 8 OLI/TIRS imagery as well as BMKG (Meteorological, Climatological, and Geophysical Agency of Indonesia) and BWS climate data. The model's capability was assessed using the Area Under Curve-Receiver Operating Characteristic (AUC-ROC) curve. The results of the research show that both algorithms provide excellent model accuracy with AUC values of 1 for SVM and 0.997 for RF with SVM as the best algorithm for modeling dengue fever in Baubau City.Keywords: Machine Learning, Vulnerability, Dengue Fever, Landsat 8 Image

Author(s):  
V. P. Yadav ◽  
R. Prasad ◽  
R. Bala ◽  
A. K. Vishwakarma ◽  
S. A. Yadav ◽  
...  

Abstract. The leaf area index (LAI) is one of key variable of crops which plays important role in agriculture, ecology and climate change for global circulation models to compute energy and water fluxes. In the recent research era, the machine-learning algorithms have provided accurate computational approaches for the estimation of crops biophysical parameters using remotely sensed data. The three machine-learning algorithms, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) were used to estimate the LAI for crops in the present study. The three different dates of Landsat-8 satellite images were used during January 2017 – March 2017 at different crops growth conditions in Varanasi district, India. The sampling regions were fully covered by major Rabi season crops like wheat, barley and mustard etc. In total pooled data, 60% samples were taken for the training of the algorithms and rest 40% samples were taken as testing and validation of the machinelearning regressions algorithms. The highest sensitivity of normalized difference vegetation index (NDVI) with LAI was found using RFR algorithms (R2 = 0.884, RMSE = 0.404) as compared to SVR (R2 = 0.847, RMSE = 0.478) and ANNR (R2 = 0.829, RMSE = 0.404). Therefore, RFR algorithms can be used for accurate estimation of LAI for crops using satellite data.


2021 ◽  
Vol 11 (21) ◽  
pp. 10062
Author(s):  
Aimin Li ◽  
Meng Fan ◽  
Guangduo Qin ◽  
Youcheng Xu ◽  
Hailong Wang

Monitoring open water bodies accurately is important for assessing the role of ecosystem services in the context of human survival and climate change. There are many methods available for water body extraction based on remote sensing images, such as the normalized difference water index (NDWI), modified NDWI (MNDWI), and machine learning algorithms. Based on Landsat-8 remote sensing images, this study focuses on the effects of six machine learning algorithms and three threshold methods used to extract water bodies, evaluates the transfer performance of models applied to remote sensing images in different periods, and compares the differences among these models. The results are as follows. (1) Various algorithms require different numbers of samples to reach their optimal consequence. The logistic regression algorithm requires a minimum of 110 samples. As the number of samples increases, the order of the optimal model is support vector machine, neural network, random forest, decision tree, and XGBoost. (2) The accuracy evaluation performance of each machine learning on the test set cannot represent the local area performance. (3) When these models are directly applied to remote sensing images in different periods, the AUC indicators of each machine learning algorithm for three regions all show a significant decline, with a decrease range of 0.33–66.52%, and the differences among the different algorithm performances in the three areas are obvious. Generally, the decision tree algorithm has good transfer performance among the machine learning algorithms with area under curve (AUC) indexes of 0.790, 0.518, and 0.697 in the three areas, respectively, and the average value is 0.668. The Otsu threshold algorithm is the optimal among threshold methods, with AUC indexes of 0.970, 0.617, and 0.908 in the three regions respectively and an average AUC of 0.832.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2769 ◽  
Author(s):  
Tri Dev Acharya ◽  
Anoj Subedi ◽  
Dong Ha Lee

With over 6000 rivers and 5358 lakes, surface water is one of the most important resources in Nepal. However, the quantity and quality of Nepal’s rivers and lakes are decreasing due to human activities and climate change. Despite the advancement of remote sensing technology and the availability of open access data and tools, the monitoring and surface water extraction works has not been carried out in Nepal. Single or multiple water index methods have been applied in the extraction of surface water with satisfactory results. Extending our previous study, the authors evaluated six different machine learning algorithms: Naive Bayes (NB), recursive partitioning and regression trees (RPART), neural networks (NNET), support vector machines (SVM), random forest (RF), and gradient boosted machines (GBM) to extract surface water in Nepal. With three secondary bands, slope, NDVI and NDWI, the algorithms were evaluated for performance with the addition of extra information. As a result, all the applied machine learning algorithms, except NB and RPART, showed good performance. RF showed overall accuracy (OA) and kappa coefficient (Kappa) of 1 for the all the multiband data with the reference dataset, followed by GBM, NNET, and SVM in metrics. The performances were better in the hilly regions and flat lands, but not well in the Himalayas with ice, snow and shadows, and the addition of slope and NDWI showed improvement in the results. Adding single secondary bands is better than adding multiple in most algorithms except NNET. From current and previous studies, it is recommended to separate any study area with and without snow or low and high elevation, then apply machine learning algorithms in original Landsat data or with the addition of slopes or NDWI for better performance.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 844
Author(s):  
Ting-Zhao Chen ◽  
Yan-Yan Chen ◽  
Jian-Hui Lai

With expansion of city scale, the issue of public transport systems will become prominent. For single-swipe buses, the traditional method of obtaining section passenger flow is to rely on surveillance video identification or manual investigation. This paper adopts a new method: collecting wireless signals from mobile terminals inside and outside the bus by installing six Wi-Fi probes in the bus, and use machine learning algorithms to estimate passenger flow of the bus. Five features of signals were selected, and then the three machine learning algorithms of Random Forest, K-Nearest Neighbor, and Support Vector Machines were used to learn the data laws of signal features. Because the signal strength was affected by the complexity of the environment, a strain function was proposed, which varied with the degree of congestion in the bus. Finally, the error between the average of estimation result and the manual survey was 0.1338. Therefore, the method proposed is suitable for the passenger flow identification of single-swiping buses in small and medium-sized cities, which improves the operational efficiency of buses and reduces the waiting pressure of passengers during the morning and evening rush hours in the future.


Author(s):  
Ravita Chahar ◽  
Deepinder Kaur

In this paper machine learning algorithms have been discussed and analyzed. It has been discussed considering computational aspects in different domains. These algorithms have the capability of building mathematical and analytical model. These models may be helpful in the decision-making process. This paper elaborates the computational analysis in three different ways. The background and analytical aspect have been presented with the learning application in the first phase. In the second phase detail literature has been explored along with the pros and cons of the applied techniques in different domains. Based on the literatures, gap identification and the limitations have been discussed and highlighted in the third phase. Finally, computational analysis has been presented along with the machine learning results in terms of accuracy. The results mainly focus on the exploratory data analysis, domain applicability and the predictive problems. Our systematic analysis shows that the applicability of machine learning is wide and the results may be improved based on these algorithms. It is also inferred from the literature analysis that at the applicability of machine learning algorithm has the capability in the performance improvement. The main methods discussed here are classification and regression trees (CART), logistic regression, naïve Bayes (NB), k-nearest neighbors (KNN), support vector machine (SVM) and decision tree (DT). The domain covered mainly are disease detection, business intelligence, industry automation and sentiment analysis.


2021 ◽  
Author(s):  
Aayushi Rathore ◽  
Anu Saini ◽  
Navjot Kaur ◽  
Aparna Singh ◽  
Ojasvi Dutta ◽  
...  

ABSTRACTSepsis is a severe infectious disease with high mortality, and it occurs when chemicals released in the bloodstream to fight an infection trigger inflammation throughout the body and it can cause a cascade of changes that damage multiple organ systems, leading them to fail, even resulting in death. In order to reduce the possibility of sepsis or infection antiseptics are used and process is known as antisepsis. Antiseptic peptides (ASPs) show properties similar to antigram-negative peptides, antigram-positive peptides and many more. Machine learning algorithms are useful in screening and identification of therapeutic peptides and thus provide initial filters or built confidence before using time consuming and laborious experimental approaches. In this study, various machine learning algorithms like Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbour (KNN) and Logistic Regression (LR) were evaluated for prediction of ASPs. Moreover, the characteristics physicochemical features of ASPs were also explored to use them in machine learning. Both manual and automatic feature selection methodology was employed to achieve best performance of machine learning algorithms. A 5-fold cross validation and independent data set validation proved RF as the best model for prediction of ASPs. Our RF model showed an accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.93, which are indication of a robust and good model. To our knowledge this is the first attempt to build a machine learning classifier for prediction of ASPs.


Author(s):  
Stuti Pandey ◽  
Abhay Kumar Agarwal

Cardiovascular disease prediction is a research field of healthcare which depends on a large volume of data for making effective and accurate predictions. These predictions can be more effective and accurate when used with machine learning algorithms because it can disclose all the concealed facts which are helpful in making decisions. The processing capabilities of machine learning algorithms are also very fast which is almost infeasible for human beings. Therefore, the work presented in this research focuses on identifying the best machine learning algorithm by comparing their performances for predicting cardiovascular diseases in a reasonable time. The machine learning algorithms which have been used in the presented work are naïve Bayes, support vector machine, k-nearest neighbors, and random forest. The dataset which has been utilized for this comparison is taken from the University of California, Irvine (UCI) machine learning repository named “Heart Disease Data Set.”


2013 ◽  
Vol 10 (2) ◽  
pp. 1376-1383
Author(s):  
Dr.Vijay Pal Dhaka ◽  
Swati Agrawal

Maintainability is an important quality attribute and a difficult concept as it involves a number of measurements. Quality estimation means estimating maintainability of software. Maintainability is a set of attribute that bear on the effort needed to make specified modification. The main goal of this paper is to propose use of few machine learning algorithms with an objective to predict software maintainability and evaluate them. The propose models are Gaussian process regression networks (GPRN), probably approximately correct learning (PAC), Genetic algorithm (GA). This paper predicts the maintenance effort. The QUES (Quality evaluation system) dataset are used in this study. The QUES datasets contains 71 classes. To measure the maintainability, number of “CHANGE” is observed over a period of few years. We can define CHANGE as the number of lines of code which were added, deleted or modified during few year maintenance periods. After this study these machine learning algorithm was compared with few models such as GRNN (General regression neural network) model, RT (Regression tree), MARS (Multiple adaptive regression splines), SVM (Support vector machine), MLR (Multiple linear regression) models. Based on experiments, it was found that GPRN can be predicting the maintainability more accurately and precisely than prevailing models. We also include object oriented software metric to measure the software maintainability. The use of machine learning algorithms to establish the relationship between metrics and maintainability would be much better approach as these are based on quantity as well as quality. 


Author(s):  
Shahadat Uddin ◽  
Arif Khan ◽  
Md Ekramul Hossain ◽  
Mohammad Ali Moni

Abstract Background Supervised machine learning algorithms have been a dominant method in the data mining field. Disease prediction using health data has recently shown a potential application area for these methods. This study aims to identify the key trends among different types of supervised machine learning algorithms, and their performance and usage for disease risk prediction. Methods In this study, extensive research efforts were made to identify those studies that applied more than one supervised machine learning algorithm on single disease prediction. Two databases (i.e., Scopus and PubMed) were searched for different types of search items. Thus, we selected 48 articles in total for the comparison among variants supervised machine learning algorithms for disease prediction. Results We found that the Support Vector Machine (SVM) algorithm is applied most frequently (in 29 studies) followed by the Naïve Bayes algorithm (in 23 studies). However, the Random Forest (RF) algorithm showed superior accuracy comparatively. Of the 17 studies where it was applied, RF showed the highest accuracy in 9 of them, i.e., 53%. This was followed by SVM which topped in 41% of the studies it was considered. Conclusion This study provides a wide overview of the relative performance of different variants of supervised machine learning algorithms for disease prediction. This important information of relative performance can be used to aid researchers in the selection of an appropriate supervised machine learning algorithm for their studies.


Sign in / Sign up

Export Citation Format

Share Document