scholarly journals Security Enhancement in Cloud Environment using Secure Secret Key Sharing

2020 ◽  
Vol 16 (4) ◽  
pp. 296-307
Author(s):  
Sakshi Chhabra ◽  
Ashutosh Kumar Singh

Securing the data in distributed cloud system is considered one of the major concern for the cloud customers who faces security risks. The data leakage or data tampering are widely used by attackers to extract the private information of other users who shares the confidential data through virtualization. This paper presents Secure Secret Sharing (SSS) technique which is being recognized as one of the leading method to secure the sensitive data. It shares encrypted data over cloud and generated secret key is split into different parts distributed to qualified participants (Qn) only which is analyzed by malicious checkers. It verifies the clients based on their previous performances, whether these users proved to be authorized participant or not. The key computation is evaluated by the Key handler (KH) called trusted party which manages authorized control list, encryption/decryption and reconstruction of key shares. The Lagrange’s interpolation method is used to reconstruct the secret from shares. The experimental results shows that the proposed secure data sharing algorithm not only provides excellent security and performance, but also achieves better key management and data confidentiality than previous countermeasures. It improves the security by using secure VM placement and evaluated based on time consumption and probability computation to prove the efficacy of our algorithm. Experiments are performed on cloudsim based on following parameters i.e. time computation of key generation; response time and encryption/decryption. The experimental results demonstrate that this method can effectively reduce the risks and improves the security and time consumption upto 27.81% and 43.61% over existing algorithms.

Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 701
Author(s):  
Miodrag J. Mihaljević

An approach for security enhancement of a class of encryption schemes is pointed out and its security is analyzed. The approach is based on certain results of coding and information theory regarding communication channels with erasures and deletion errors. In the security enhanced encryption scheme, the wiretapper faces a problem of cryptanalysis after a communication channel with bits deletion and a legitimate party faces a problem of decryption after a channel with bit erasures. This paper proposes the encryption-decryption paradigm for the security enhancement of lightweight block ciphers based on dedicated error-correction coding and a simulator of the deletion channel controlled by the secret key. The security enhancement is analyzed in terms of the related probabilities, equivocation, mutual information and channel capacity. The cryptographic evaluation of the enhanced encryption includes employment of certain recent results regarding the upper-bounds on the capacity of channels with deletion errors. It is shown that the probability of correct classification which determines the cryptographic security depends on the deletion channel capacity, i.e., the equivocation after this channel, and number of codewords in employed error-correction coding scheme. Consequently, assuming that the basic encryption scheme has certain security level, it is shown that the security enhancement factor is a function of the deletion rate and dimension of the vectors subject to error-correction encoding, i.e., dimension of the encryption block.


2019 ◽  
Vol 8 (3) ◽  
pp. 3679-3685

Symmetric-key cryptography is a classical cryptography in which both sender and receiver use the same key K to encrypt and decrypt the message. The main challenge between sender and receiver is to agree upon the secret-key which should not be revealed to public. Key management is the major issue in symmetric-key cryptosystem. To avoid these, a novel approach in generating the keystream Ks for any symmetric-key algorithms using U-matrix is proposed in this paper. The advantage of this method is generation of key K from Ks is based on some deterministic procedure which is then applied to DES algorithm and K is not necessarily remembered by both sender and receiver. Further, in each round different key is used as opposed to usage of single key in classical DES. Experimental results clearly show the security is increased when it is compared with classical DES.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Miodrag J. Mihaljević ◽  
Aleksandar Kavčić ◽  
Kanta Matsuura

An encryption/decryption approach is proposed dedicated to one-way communication between a transmitter which is a computationally powerful party and a receiver with limited computational capabilities. The proposed encryption technique combines traditional stream ciphering and simulation of a binary channel which degrades channel input by inserting random bits. A statistical model of the proposed encryption is analyzed from the information-theoretic point of view. In the addressed model an attacker faces the problem implied by observing the messages through a channel with random bits insertion. The paper points out a number of security related implications of the considered channel. These implications have been addressed by estimation of the mutual information between the channel input and output and estimation of the number of candidate channel inputs for a given channel output. It is shown that deliberate and secret key controlled insertion of random bits into the basic ciphertext provides security enhancement of the resulting encryption scheme.


2020 ◽  
Vol 8 (6) ◽  
pp. 4623-4630

IoT(Internet of things) equipments is used heavily, but they are poor in security issue and security can be pierced. Also the message that the IoT device transmit is the main cause for their security lapse. that the IoT devices send may lead to the breach of users’ privacy. To make the communication secure between IoT nodes and servers, a lightweight cryptographic algorithm using pseudo stream and trigonometric function with dynamic key is proposed. This algorithm works in different phases, the first is mutual authentication followed by key synchronization and then a trigonometry function for encryption and decryption, with updation of key after specific time period. The algorithm assures that the IoT node will not be overloaded and the security is enhanced by reducing the chance of cryptanalysis. The mutual authentication, session key synchronization and updation of session key are completed through several encrypted communication. Here, the key length and update cycle are variable to prevent attack. We compare the security and performance for mutual authentication, with some light weight authentication scheme and performance of encryption algorithm are compared to other algorithm like Hill Cipher, RC4, RSA. According to analysis the proposed mutual authentication and secret key for session synchronization can provide more security features with low over head of communication which is suitable for protect communication security of IoT with limited resource and power. The encryption decryption algorithm provides better performance. Trigonometric concept is used in the design of encryption decryption algorithm.


2014 ◽  
Vol 60 (1) ◽  
pp. 101-116
Author(s):  
Eugen Antal ◽  
Viliam Hromada

Abstract In 2013, a new stream cipher was proposed in Antal, E.-Hromada, V.: A new stream cipher based on Fialka M-125, Tatra Mt. Math. Publ. 57 (2013), 101-118. Its design was inspired and motivated by a Soviet encryption machine Fialka M-125. The authors proposed three versions of the cipher with different inner state bit-lengths. They provided the design, software implementation on a personal computer and a preliminary statistical and performance analysis of the cipher. In this article we extend their work by implementing all three versions of the cipher on two different micro-controllers: EBV SoCrates evaluation board [Official SoCrates webpage (EBV SoCrates evaluation board), www.rockerboards.org] and STM32F407VG [Official STM webpage (STM32F407VG), www.st.com]. We evaluate the performance of all implementations on both platforms. We also investigate the possibilities of performing a simple power analysis of the implementation of the 8-bit version of the cipher implemented on STM32F407VG micro-controller. It stems from our experiments that we are able to determine a part of the secret key of the cipher by observing the power trace (power consumption) of the encryption/decryption process


2013 ◽  
Vol 1 (3) ◽  
pp. 48-65
Author(s):  
Yuting Chen

A concurrent program is intuitively associated with probability: the executions of the program can produce nondeterministic execution program paths due to the interleavings of threads, whereas some paths can always be executed more frequently than the others. An exploration of the probabilities on the execution paths is expected to provide engineers or compilers with support in helping, either at coding phase or at compile time, to optimize some hottest paths. However, it is not easy to take a static analysis of the probabilities on a concurrent program in that the scheduling of threads of a concurrent program usually depends on the operating system and hardware (e.g., processor) on which the program is executed, which may be vary from machine to machine. In this paper the authors propose a platform independent approach, called ProbPP, to analyzing probabilities on the execution paths of the multithreaded programs. The main idea of ProbPP is to calculate the probabilities on the basis of two kinds of probabilities: Primitive Dependent Probabilities (PDPs) representing the control dependent probabilities among the program statements and Thread Execution Probabilities (TEPs) representing the probabilities of threads being scheduled to execute. The authors have also conducted two preliminary experiments to evaluate the effectiveness and performance of ProbPP, and the experimental results show that ProbPP can provide engineers with acceptable accuracy.


Author(s):  
Ou Ruan ◽  
Lixiao Zhang ◽  
Yuanyuan Zhang

AbstractLocation-based services are becoming more and more popular in mobile online social networks (mOSNs) for smart cities, but users’ privacy also has aroused widespread concern, such as locations, friend sets and other private information. At present, many protocols have been proposed, but these protocols are inefficient and ignore some security risks. In the paper, we present a new location-sharing protocol, which solves two issues by using symmetric/asymmetric encryption properly. We adopt the following methods to reduce the communication and computation costs: only setting up one location server; connecting social network server and location server directly instead of through cellular towers; avoiding broadcast encryption. We introduce dummy identities to protect users’ identity privacy, and prevent location server from inferring users’ activity tracks by updating dummy identities in time. The details of security and performance analysis with related protocols show that our protocol enjoys two advantages: (1) it’s more efficient than related protocols, which greatly reduces the computation and communication costs; (2) it satisfies all security goals; however, most previous protocols only meet some security goals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1954
Author(s):  
Aaron J Brown ◽  
Gillian Scoley ◽  
Niamh O’Connell ◽  
Jamie Robertson ◽  
Amanda Browne ◽  
...  

The first few months of life are of great importance to the longevity and lifetime performance of dairy cows. The nutrition, environment and healthcare management of heifer calves must be sufficient to minimise exposure to stress and disease and enable them to perform to their genetic potential. Lack of reporting of farm management practices in Northern Ireland (NI) makes it difficult to understand where issues impacting health, welfare and performance may occur in the rearing process. The objective of this study was to investigate housing design and management practices of calves on 66 dairy farms across NI over a 3-month period and also identify areas that may cause high risk of poor health and performance in dairy calves. An initial survey was used to detail housing and management practices, with two subsequent visits to each farm used to collect animal and housing-based measurements linked to hygiene management, animal health and performance. Large variations in key elements such as weaning criteria and method, calf grouping method used, nutritional feed plane, and routine hygiene management were identified. The specification of housing, in particular ventilation and stocking density, was highlighted as a potential limiting factor for calf health and performance. Lack of measurement of nutritional inputs, hygiene management practices and calf performance was observed. This poses a risk to farmers’ ability to ensure the effectiveness of key management strategies and recognise poor calf performance and health.


Sign in / Sign up

Export Citation Format

Share Document