scholarly journals Antifungal activity of a biosurfactant-producing lactic acid bacteria strain

2017 ◽  
Vol 1 (3) ◽  
pp. 212-216
Author(s):  
Gabi Mirela Matei ◽  
Sorin Matei ◽  
Adrian Matei ◽  
Elena Draghici

Abstract Lactic acid bacteria are frequently utilized in food industry and they are also recognized as antimicrobial agents due to their capability to produce metabolites such as: organic acids, biosurfactants, bacteriocins, hydrogen peroxide, cyclic dipeptides, exopolysaccharides. The main goal of this paper was to present the results of the research carried out on the strain LCM2 of lactic acid bacteria isolated from brined cucumbers, for production of biosurfactants and to assess its antifungal properties. The emulsification capacity of biosurfactant was measured using kerosene as the hydrophobic substrate. The value of emulsification index E24 was 89.04% showing a high emulsification activity of the biosurfactant. The structural characterization of biosurfactant by TLC revealed its glycolipidic nature. Assay of the ionic charge established the anionic charge of the biosurfactant revealed by the presence of precipitation lines towards the cationic surfactant dodecyl-dimethyl-ammonium chloride. The biosurfactant presented antibiofilm activity with low adherence capacity, structural damages of the hyphal net, conidiophores and delays or lack of sporulation and decreased biomass accumulation in four mycotoxigenic Penicillium and Aspergillus isolates. Results of in vitro assays recommend the biosurfactant produced by the new lactic acid bacteria strain LCM2 for biotechnological purposes, as alternative antifungal agent in food industry.

2021 ◽  
Vol 9 (10) ◽  
pp. 2141
Author(s):  
Ji Young Jung ◽  
Sang-Soo Han ◽  
Z-Hun Kim ◽  
Myung Hoo Kim ◽  
Hye Kyeong Kang ◽  
...  

Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58–100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.


2021 ◽  
Vol 9 (3) ◽  
pp. 263-275
Author(s):  
Soibam Ngasotter ◽  
◽  
David Waikhom ◽  
Sanjeev Sharma ◽  
Maibam Malemngamba Meitei ◽  
...  

Lactic acid bacteria (LAB) are widely used in the food industry due to their probiotic properties and fermentation activities. Traditional fermented fish products are dominated by a diverse variety of lactic acid bacteria with significant probiotic characteristics. Several in vitro and in vivo studies on lactic acid bacteria from fermented fish products have confirmed LAB strains to possess characteristics to be considered as probiotics that contribute to positive health benefits to the host and are generally regarded as safe (GRAS). This paper presents a review of the characteristics of the LAB strain that is considered as a probiotic. It also presents an overview of the probiotics mechanism of action and specifically highlights the LAB species with potential probiotic characteristics isolated from traditional fermented fish products.


2005 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
K. Szekér ◽  
J. Beczner ◽  
A. Halász ◽  
Á. Mayer ◽  
J.M. Rezessy-Szabó ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chatchai Kaewpila ◽  
Pongsatorn Gunun ◽  
Piyawit Kesorn ◽  
Sayan Subepang ◽  
Suwit Thip-uten ◽  
...  

AbstractImproving the nutrition of livestock is an important aspect of global food production sustainability. This study verified whether lactic acid bacteria (LAB) inoculant could promote ensiling characteristics, nutritive value, and in vitro enteric methane (CH4) mitigation of forage sorghum (FS) mixture silage in attacking malnutrition in Zebu beef cattle. The FS at the soft dough stage, Cavalcade hay (CH), and cassava chip (CC) were obtained. The treatments were designed as a 4 × 2 factorial arrangement in a completely randomized design. Factor A was FS prepared without or with CH, CC, and CH + CC. Factor B was untreated or treated with Lactobacillus casei TH14. The results showed that all FS mixture silages preserved well with lower pH values below 4.0 and higher lactic acid contents above 56.4 g/kg dry matter (DM). Adding LAB boosted the lactic acid content of silages. After 24 h and 48 h of in vitro rumen incubation, the CC-treated silage increased in vitro DM digestibility (IVDMD) with increased total gas production and CH4 production. The LAB-treated silage increased IVDMD but decreased CH4 production. Thus, the addition of L. casei TH14 inoculant could improve lactic acid fermentation, in vitro digestibility, and CH4 mitigation in the FS mixture silages.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


2021 ◽  
Vol 62 (5) ◽  
pp. 148-156
Author(s):  
Kenji Oonaka ◽  
Naoki Kobayashi ◽  
Yosuke Uchiyama ◽  
Mioko Honda ◽  
Shiro Miyake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document