scholarly journals Modified Space Vector Modulated Z Source Inverter with Effective DC Boost and Lowest Switching Stress

2010 ◽  
Vol 7 (1) ◽  
pp. 70 ◽  
Author(s):  
S. Thangaprakash ◽  
A. Krishnan

 This paper presents a modified control algorithm for Space Vector Modulated (SVM) Z-Source inverters. In traditional control strategies, the Z-Source capacitor voltage is controlled by the shoot through duty ratio and the output voltage is controlled by the modulation index respectively. Proposed algorithm provides a modified voltage vector with single stage controller having one degree of freedom wherein traditional controllers have two degrees of freedom. Through this method of control, the full utilization of the dc link input voltage and keeping the lowest voltage stress across the switches with variable input voltage could be achieved. Further it offers ability of buck-boost operation, low distorted output waveforms, sustainability during voltage sags and reduced line harmonics. The SVM control algorithm presented in this paper is implemented through Matlab/Simulink tool and experimentally verified with Z-source inverter prototype in the laboratory. 

2021 ◽  
Author(s):  
Jiacheng Wang

High-power multimodular matrix converters (MMMCs) comprising multiple threephase to single-phase matrix converter modules have emerged as a viable topology candidate for medium-voltage adjustable speed drives. As a combination of direct power conversion and cascaded multilevel structure, the MMMCs inherit features such as elimination of dc capacitors, four quadrant operation capability, employment of lowvoltage devices only, and superior output waveform quality under a limited device switching frequency. Due to their particular topological structure, modulation scheme design for the MMMCs is not straightforward and complicated. The presented work is mainly focused on development of suitable modulation schemes for the MMMCs. Several viable schemes as well as their corresponding switching patterns are proposed and verified by both simulation and experimental results. In order for the MMMCs to produce sinusoidal waveforms at both input and output ac terminals, a direct transfer matrix based modulation scheme is presented. It is revealed that a suitable modulation strategy for the MMMCs should aim at fabricating the total input current on the primary side of the isolation transformer. For topologies with more than two modules in cascade on each output phase, switching period displacement is necessary among modules to generate multilevel output waveforms. An indirect space vector based modulation scheme for the MMMCs is developed. With a few presumptions satisfied and viewed from a certain perspective, the MMMCs can still be modeled indirectly and be divided into fictitious rectifier and inverter stages. Therefore, space vector modulation methods can be independently applied to both stages for duty ratio calculation, before the results are converted and combined for determining per-phase output pulses. A new output switching pattern providing improved harmonic performance is also proposed. A novel modulation scheme based on diode rectifier emulation and phase-shifted sinusoidal pulse-width modulation is proposed. The method sacrifices input power factor adjustment, but enables the use of an indirect module construction leading to significantly reduced device count and complexity. Strategy for reducing additional switchings caused by input voltage ripples is also implemented and explained. In addition to simulation verifications, all the proposed schemes are further tested experimentally on a low-voltage prototype built in the lab. Details about the prototype implementation are introduced.


Author(s):  
Rusdy Hartungi

In this paper two input current modulation strategies for matrix converters are experimentally analyzed under two different supply conditions: sinusoidal unbalanced voltages and non-sinusoidal balanced voltages. Both strategies use the Space Vector Modulation (SVM) technique in order to control the matrix converter accordingly to the input and output constraints. Strategy A modulates the input currents keeping the corresponding space vector in phase with the input voltage vector. Strategy B operates in order to keep the input current vector in phase with the positive sequence fundamental component of the input voltage vector. A comparison between the two strategies is made in terms of the reduction of the input current disturbances due to the unbalanced and non sinusoidal voltage on the grid. It is found that a dynamic current modulation strategy, independent of the voltage disturbances such as Strategy B, is more effective for the reduction of the RMS value of input current disturbances. The validity of the theoretical investigation i.e. the effectiveness of the current modulation strategy conforms to experimental tests result carried out on a matrix converter prototype.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2051
Author(s):  
Abualkasim Bakeer ◽  
Andrii Chub ◽  
Andrei Blinov ◽  
Jih-Sheng Lai

This paper proposes a galvanically isolated dc-dc converter that can regulate the input voltage in a wide range. It is based on the series resonance dc-dc converter (SRC) topology and a novel boost rectifier. The proposed topology has a smaller number of semiconductors than its SRC-based existing topologies employing an ac-switch in the boost rectifier. The proposed dc-dc converter comprises only two diodes and one switch at the output side, while the existing solutions use two switches and two diodes to step up the voltage. The proposed converter boosts the input voltage within a single boosting interval in the positive half-cycle of the switching period. In addition, the resonant current in the negative half-cycle is sinusoidal, which could enhance the converter efficiency. The resonant capacitor voltage is clamped at the level of the output voltage. Therefore, the voltage stress of the capacitor could significantly reduce at various input voltage and power levels. This makes it perfect for distributed generation applications such as photovoltaics with wide variations of input voltage and power. The converter operates at the fixed switching frequency close to the resonance frequency to obtain the maximum efficiency at the nominal input voltage. The zero-voltage switching (ZVS) feature is achieved in the primary semiconductors, while the diodes in the output-side rectifier turn off at nearly zero current switching. The mathematical model and design guidelines of the proposed converter are discussed in the paper. The experimental results confirmed the theoretical analysis based on a 300 W prototype. The maximum efficiency of the converter was 96.8% at the nominal input voltage, and the converter has achieved a wider input voltage regulation range than that with the boosting cell comprising an ac-switch.


2021 ◽  
Author(s):  
Jiacheng Wang

High-power multimodular matrix converters (MMMCs) comprising multiple threephase to single-phase matrix converter modules have emerged as a viable topology candidate for medium-voltage adjustable speed drives. As a combination of direct power conversion and cascaded multilevel structure, the MMMCs inherit features such as elimination of dc capacitors, four quadrant operation capability, employment of lowvoltage devices only, and superior output waveform quality under a limited device switching frequency. Due to their particular topological structure, modulation scheme design for the MMMCs is not straightforward and complicated. The presented work is mainly focused on development of suitable modulation schemes for the MMMCs. Several viable schemes as well as their corresponding switching patterns are proposed and verified by both simulation and experimental results. In order for the MMMCs to produce sinusoidal waveforms at both input and output ac terminals, a direct transfer matrix based modulation scheme is presented. It is revealed that a suitable modulation strategy for the MMMCs should aim at fabricating the total input current on the primary side of the isolation transformer. For topologies with more than two modules in cascade on each output phase, switching period displacement is necessary among modules to generate multilevel output waveforms. An indirect space vector based modulation scheme for the MMMCs is developed. With a few presumptions satisfied and viewed from a certain perspective, the MMMCs can still be modeled indirectly and be divided into fictitious rectifier and inverter stages. Therefore, space vector modulation methods can be independently applied to both stages for duty ratio calculation, before the results are converted and combined for determining per-phase output pulses. A new output switching pattern providing improved harmonic performance is also proposed. A novel modulation scheme based on diode rectifier emulation and phase-shifted sinusoidal pulse-width modulation is proposed. The method sacrifices input power factor adjustment, but enables the use of an indirect module construction leading to significantly reduced device count and complexity. Strategy for reducing additional switchings caused by input voltage ripples is also implemented and explained. In addition to simulation verifications, all the proposed schemes are further tested experimentally on a low-voltage prototype built in the lab. Details about the prototype implementation are introduced.


2012 ◽  
Vol 430-432 ◽  
pp. 1472-1476
Author(s):  
Jin Ming Yang ◽  
Yi Lin

This article describes the development of a dedicated controller for HVAC control, and introduces the hardware interface circuits about some main chip on controller. In addition, the article also explains composition and principle about control software applied to the controller, further more points out that the fuzzy control algorithm is more reasonable than the PID algorithm for most HVAC control and dedicated control strategies play an important role for HVAC control.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Wander Gustavo Rocha Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

In recent decades, semi-active control strategies have been investigated for vibration reduction. In general, these techniques provide enhanced control performance when compared to traditional passive techniques and lower energy consumption if compared to active control techniques. In semi-active concepts, vibration attenuation is achieved by modulating inertial, stiffness, or damping properties of a dynamic system. The smart spring is a mechanical device originally employed for the effective modulation of its stiffness through the use of semi-active control strategies. This device has been successfully tested to damp aeroelastic oscillations of fixed and rotary wings. In this paper, the modeling of the smart spring mechanism is presented and two semi-active control algorithms are employed to promote vibration reduction through enhanced damping effects. The first control technique is the smart-spring resetting (SSR), which resembles resetting control techniques developed for vibration reduction of civil structures as well as the piezoelectric synchronized switch damping on short (SSDS) technique. The second control algorithm is referred to as the smart-spring inversion (SSI), which presents some similarities with the synchronized switch damping (SSD) on inductor technique previously presented in the literature of electromechanically coupled systems. The effects of the SSR and SSI control algorithms on the free and forced responses of the smart-spring are investigated in time and frequency domains. An energy flow analysis is also presented in order to explain the enhanced damping behavior when the SSI control algorithm is employed.


2013 ◽  
Vol 479-480 ◽  
pp. 535-539
Author(s):  
Van Tsai Liu ◽  
Chien Hao Hsu

In this paper, a novel high step-up DC-DC converter has been designed for fuel cell applications. The proposed high step-up converter can be used for various portable energy storage components such as fuel cells which are used for hybrid electric vehicles (HEV), and light electric vehicles (LEV).The proposed converter is integrated by boost circuit, voltage lift capacitor, and coupled-inductor techniques to achieve high step-up voltage and has several advantages. First, the circuit is controlled by one single pulse width modulation (PWM). Second, the converter consists of active clamp circuit to recycle the leakage inductance and send to output capacitor so that the voltage spike on active switch is suppressed and efficiency is also improved. Third, by using the winding of secondary boost circuit, and voltage lift capacitor techniques, the high voltage gain can be achieved without more than 50% duty ratio, and the slope compensation circuit can also be simplified.Finally, a 1k W prototype converter is implemented, to verify the performance of the proposed converter with input voltage 48V, output voltage 400V, and output power 1k W is also achieved. The highest efficiency is 92.96% at 400W, and the full-load efficiency is up to 90.48%.


Sign in / Sign up

Export Citation Format

Share Document