scholarly journals Wide Range Series Resonant DC-DC Converter with a Reduced Component Count and Capacitor Voltage Stress for Distributed Generation

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2051
Author(s):  
Abualkasim Bakeer ◽  
Andrii Chub ◽  
Andrei Blinov ◽  
Jih-Sheng Lai

This paper proposes a galvanically isolated dc-dc converter that can regulate the input voltage in a wide range. It is based on the series resonance dc-dc converter (SRC) topology and a novel boost rectifier. The proposed topology has a smaller number of semiconductors than its SRC-based existing topologies employing an ac-switch in the boost rectifier. The proposed dc-dc converter comprises only two diodes and one switch at the output side, while the existing solutions use two switches and two diodes to step up the voltage. The proposed converter boosts the input voltage within a single boosting interval in the positive half-cycle of the switching period. In addition, the resonant current in the negative half-cycle is sinusoidal, which could enhance the converter efficiency. The resonant capacitor voltage is clamped at the level of the output voltage. Therefore, the voltage stress of the capacitor could significantly reduce at various input voltage and power levels. This makes it perfect for distributed generation applications such as photovoltaics with wide variations of input voltage and power. The converter operates at the fixed switching frequency close to the resonance frequency to obtain the maximum efficiency at the nominal input voltage. The zero-voltage switching (ZVS) feature is achieved in the primary semiconductors, while the diodes in the output-side rectifier turn off at nearly zero current switching. The mathematical model and design guidelines of the proposed converter are discussed in the paper. The experimental results confirmed the theoretical analysis based on a 300 W prototype. The maximum efficiency of the converter was 96.8% at the nominal input voltage, and the converter has achieved a wider input voltage regulation range than that with the boosting cell comprising an ac-switch.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4220
Author(s):  
Abualkasim Bakeer ◽  
Andrii Chub ◽  
Dmitri Vinnikov ◽  
Argo Rosin

The series resonant DC-DC converter (SRC) can regulate the input voltage in a wide range at a fixed switching frequency. In this work, the bridgeless rectifier, which is utilized intensively in the applications of the power factor correction, has been integrated into the SRC as a voltage step-up cell at the output-side of the SRC. It is shown that the conventional overlapping pulse-width modulation (PWM) of the two metal oxide semiconductor field-effect transistors MOSFETs in this rectification cell limits the input voltage regulation range of the converter due to excessive power losses in abnormal operating conditions. The abnormal operating conditions occur when the instantaneous voltage across the resonant capacitor is larger than the secondary voltage of the isolation transformer. This happens at high values of the DC voltage gain, i.e., low input voltages and high currents, which causes the resonant current to flow in the reverse direction in the same half-cycle through a parasitic path formed by overlapping PWM of the rectifier MOSFETs. The abnormal operation results in additional conduction loss in the converter as the MOSFETs of the bridgeless boost rectifier turn on at high current at the beginning of each half of the switching period. Accordingly, the overall efficiency of the converter significantly deteriorates. This paper proposes the hybrid PWM aiming to improve the efficiency of the SRC with a bridgeless boost rectifier in a wide input voltage regulation range. The converter swaps between the overlapping and the proposed short-pulse PWM schemes to drive the MOSFETs in the bridgeless boost rectifier. The transition between the two PWM schemes is defined according to the boundary condition that relies upon the operating point of the converter power and the input voltage. The proposed hybrid PWM scheme is analyzed and compared to the overlapping PWM at different levels of the input voltage and the load power. A 300 W prototype was studied in the laboratory to show the feasibility of the proposed hybrid PWM scheme with the closed-loop control system to switch between the two PWM schemes.


2010 ◽  
Vol 7 (1) ◽  
pp. 70 ◽  
Author(s):  
S. Thangaprakash ◽  
A. Krishnan

 This paper presents a modified control algorithm for Space Vector Modulated (SVM) Z-Source inverters. In traditional control strategies, the Z-Source capacitor voltage is controlled by the shoot through duty ratio and the output voltage is controlled by the modulation index respectively. Proposed algorithm provides a modified voltage vector with single stage controller having one degree of freedom wherein traditional controllers have two degrees of freedom. Through this method of control, the full utilization of the dc link input voltage and keeping the lowest voltage stress across the switches with variable input voltage could be achieved. Further it offers ability of buck-boost operation, low distorted output waveforms, sustainability during voltage sags and reduced line harmonics. The SVM control algorithm presented in this paper is implemented through Matlab/Simulink tool and experimentally verified with Z-source inverter prototype in the laboratory. 


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3747 ◽  
Author(s):  
Abualkasim Bakeer ◽  
Andrii Chub ◽  
Dmitri Vinnikov

This paper proposes a high gain DC–DC converter based on the series resonant converter (SRC) for photovoltaic (PV) applications. This study considers low power applications, where the resonant inductance is usually relatively small to reduce the cost of the converter realization, which results in low-quality factor values. On the other hand, these SRCs can be controlled at a fixed switching frequency. The proposed topology utilizes a bidirectional switch (AC switch) to regulate the input voltage in a wide range. This study shows that the existing topology with a bidirectional switch has a limited input voltage regulation range. To avoid this issue, the resonant tank is rearranged in the proposed converter to the resonance capacitor before the bidirectional switch. By this rearrangement, the dependence of the DC voltage gain on the duty cycle is changed, so the proposed converter requires a smaller duty cycle than that of the existing counterpart at the same gain. Theoretical analysis shows that the input voltage regulation range is extended to the region of high DC voltage gain values at the maximum input current. Contrary to the existing counterpart, the proposed converter can be realized with a wide range of the resonant inductance values without compromising the input voltage regulation range. Nevertheless, the proposed converter maintains advantages of the SRC, such as zero voltage switching (ZVS) turn-on of the primary-side semiconductor switches. In addition, the output-side diodes are turned off at zero current. The proposed converter is analyzed and compared with the existing counterpart theoretically and experimentally. A 300 W experimental prototype is used to validate the theoretical analysis of the proposed converter. The peak efficiency of the converter is 96.5%.


2020 ◽  
Vol 10 (22) ◽  
pp. 8250
Author(s):  
Bor-Ren Lin ◽  
Kun-Yi Chen

A new hybrid inductor-inductor-capacitor (LLC) converter is investigated to have wide voltage input operation capability and zero-voltage turn-on characteristics. The presented circuit topology can be applied for consumer power units without power factor correction or with long hold-up time requirement, photovoltaic energy conversion and renewable energy power transfer. To overcome the weakness of narrow voltage gain of resonant converter, the hybrid LLC converter with different turns ratio of transformer is presented and the experimental investigation is provided to achieve wide voltage input capability (400 V–50 V). On the input-side, the converter can operate as full bridge resonant circuit or half bridge resonant circuit with input split capacitors for high or low voltage input region. On the output-side, the less or more winding turns is selected to overcome wide voltage input operation. According to the circuit structures and transformer turns ratio, the single stage LLC converter with wide voltage input operation capability (400 V–50 V) is accomplished. The laboratory prototype has been developed and the experimental waveforms are measured and demonstrated to investigate the effectiveness of the presented hybrid LLC converter.


2021 ◽  
Author(s):  
Palash K. Banerjee

In this research project, an AC Cûk voltage regulator has been proposed for maintaining constant voltage across the load during wide range of input voltage fluctuations. The proposed AC Ck voltage regulator made of practical IGBT switches has been investigated for both manual and automatic control circuit. A fraction of the output voltage is taken as the input voltage of the control circuit and produce the error signal if any changes occur in the output voltage. The modified error signal is used to make PWM signals for switching devices as per output voltage of regulator. The PWM controls the ON/OFF time (Duty cycle) of switching devices (IGBTs) of the proposed regulator. As a result the regulator is maintaining a constant voltage across the load during any change in supply voltage. The simulation waveforms and the calculated total harmonics distortion (THD) values are compared with previously studied AC Buck-Boost regulator. The observed simulated waveforms of output voltage, output current and input current and THD values have been improved in case of proposed AC Cûk voltage regulator.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850127 ◽  
Author(s):  
Vinaya Sagar Kommukuri ◽  
Kanungo Barada Mohanty ◽  
Aditi Chatterjee ◽  
Kishor Thakre

In this paper, a high performance single-phase modified bridgeless AC–DC converter with reduced switch voltage stress for power factor correction (PFC) is introduced. The proposed converter is based on a single-ended primary-inductance converter (SEPIC) to meet the demands of PFC to unity and output voltage regulation. To reduce the number of components, the input bridge is combined with the SEPIC converter since the conventional SEPIC PFC is suffering with high conduction losses. It offers many advantages, such as fewer semiconductor devices in current flowing path which lead to improve the thermal management, low stress on each component, improved efficiency, high power factor compared to classical converter. Detailed analysis and design equations of the converter are presented. Simulation and experimental results are discussed for a 300[Formula: see text]W prototypeunder the universal input voltage (85–235[Formula: see text]V) to validate the performance of the converter.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 199 ◽  
Author(s):  
Yi-Hung Liao

A step up/down AC/DC converter with modified dual loop control is proposed. The step up/down AC/DC converter features the bridgeless characteristic which can reduce bridge-diode conduction losses. Based on the step up/down AC/DC converter, a modified dual loop control scheme is proposed to achieve input current shaping and output voltage regulation. Fewer components are needed compared with the traditional bridge and bridgeless step up/down AC/DC converters. In addition, the intermediate capacitor voltage stress can be reduced. Furthermore, the top and bottom switches still have zero-voltage turn-on function during the negative and positive half-line cycle, respectively. Hence, the thermal stresses can also be reduced and balanced. Simulation and experimental results are provided to verify the validity of the proposed step up/down AC/DC converter and its control scheme.


2021 ◽  
Vol 9 (7) ◽  
pp. 712
Author(s):  
Feng Zhang ◽  
Zhifeng Zhang ◽  
Sa Xiao ◽  
Kai Xie ◽  
Jiawei Ni ◽  
...  

The subsea observation network has become an indispensable means of ocean exploration worldwide. However, the scale of the subsea observation network is limited by the power supply voltage and power level. Hence, to promote the development of a subsea observation network, this paper investigates the underwater high voltage DC-DC converter (HVC), which greatly improves the voltage and power level of the subsea observation network. The traditional series-parallel converter based on multi-module is faced with many technical problems, such as difficult transformer isolation, many fault points, low power density under higher input voltage level, and higher output power. The subsea HVC of this paper adopts a modular multilevel resonant DC-DC converter. The main circuit of HVC is designed in detail, including a module circuit, a resonant circuit, and a control scheme. Through the combination of the sub-module removal voltage regulation and closed-loop control, the converter can still output a stable voltage of 375 V when the input voltage changes. The modular sub-module and centralized transformer structure enables the converter to isolate high voltage easily, small volume, and high power density. The simulation and experiment results show the proposed HVC meets the design requirements and has good application prospects. It can be applied to submarine power transmission and distribution needs because of its wide range, large transformation ratio, and high efficiency.


2019 ◽  
Vol 29 (05) ◽  
pp. 2050069
Author(s):  
Naresh Kumar Reddi ◽  
M. R. Ramteke ◽  
H. M. Suryawanshi

This paper proposes a new single-input dual-output [SIDO] soft-switched resonant full-bridge converter, which has asymmetrical structures for the isolated multiple outputs. The proposed structure is capable of supplying different loads having dissimilar voltage-current characteristics and independent of each other. This converter features wide range of zero current switching (ZCS) turn-off and automatic load-voltage regulation. In automatic load-voltage regulation, converter maintains constant voltage without the need of change in frequency or duty ratio during load change. First, the modes of converter operation are explained and then design of key parameters have been outlined. A laboratory prototype for 380[Formula: see text]V, 500[Formula: see text]W as main output and 24[Formula: see text]V, 50[Formula: see text]W as auxiliary output for an input voltage range of 40–50[Formula: see text]V was built-up and tested. Experimental results confirm the viability of voltage regulation, ZCS and power efficiency of the proposed converter.


2021 ◽  
Author(s):  
Palash K. Banerjee

In this research project, an AC Cûk voltage regulator has been proposed for maintaining constant voltage across the load during wide range of input voltage fluctuations. The proposed AC Ck voltage regulator made of practical IGBT switches has been investigated for both manual and automatic control circuit. A fraction of the output voltage is taken as the input voltage of the control circuit and produce the error signal if any changes occur in the output voltage. The modified error signal is used to make PWM signals for switching devices as per output voltage of regulator. The PWM controls the ON/OFF time (Duty cycle) of switching devices (IGBTs) of the proposed regulator. As a result the regulator is maintaining a constant voltage across the load during any change in supply voltage. The simulation waveforms and the calculated total harmonics distortion (THD) values are compared with previously studied AC Buck-Boost regulator. The observed simulated waveforms of output voltage, output current and input current and THD values have been improved in case of proposed AC Cûk voltage regulator.


Sign in / Sign up

Export Citation Format

Share Document