scholarly journals An Effect of Biosolar-Water Emulsion on Small Marine Diesel Engine

2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Beny Cahyono ◽  
Taufik Fajar Nugroho ◽  
Tony Bambang Musriyadi

This study aims to analyze the effect of water/biosolar emulsion fuel on the performance of engine diesel used in small capacity diesel engines. The fuel used is a mixture of biosolar 20% which is added 10% and 15% water (b20,WDE 10%, WDE 15%) which will be compared with dexlite fuel and biodiesel 20% (b20). Measurement of engine performance with various fuels was carried out in accordance with IMO marine engine regulation tier 3. The water-emulsified diesel could be used in the light-duty small diesel engine without modifications. The result shows that the net diesel fuel consumption and the exhaust gas temperature decreased with increasing water content of fuels over the investigated loading range.Performance produced by DWE 10% and 15% will been reduce Power, and Torque at each RPM. In detail, DWE 10% has better results than the DWE 15%. In the NOx emission test results, the use of water/biodiesel emulsified fuels 10% and 15% can reduce NOx emissions.

2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
Jaspreet Hira ◽  
Basant Singh Sikarwar ◽  
Rohit Sharma ◽  
Vikas Kumar ◽  
Prakhar Sharma

In this research work, a surge tank is developed and utilised in the diesel engine for controlling the NOX emission. This surge tank acts as a damper for fluctuations caused by exhaust gases and also an intercooler in reducing the exhaust gas temperature into the diesel engine intake manifold. With the utilisation of the surge tank, the NOX emission level has been reduced to approximately 50%. The developed surge tank is proved to be effective in maintaining the circulation of water at appropriate temperatures. A trade-off has been established between the engine performance parameters including the brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and all emission parameters including HC and CO.


Author(s):  
Howard Harris ◽  
Ivan Piñeiro ◽  
Tom Norris

A field test was conducted on a three splitter diffuser and a vaneless diffuser (no splitters) to determine, the pressure recovery coefficient, effects on engine performance, exhaust collector temperature distribution, and exhaust gas noise. This paper presents the cause of the mechanical failure of the three splitter diffuser, basic diffuser design, field test instrumentation, and the test results. The test results found the vaneless diffuser had a higher pressure recovery, created a lower back pressure, and did not raise the exhaust gas temperature (EGT) nor fuel consumption of the engine, as compared to the three splitter diffuser.


2012 ◽  
Vol 548 ◽  
pp. 444-449 ◽  
Author(s):  
Xin Gang Song ◽  
Yu Na Miao ◽  
Qiang Ma ◽  
Xiao Jie Guo

In order to detect and diagnose abnormal conditions of marine diesel engine and ensure its normal functioning, the present study adopts the BP neural network and related algorithms to determine the remote fault diagnosis process. Taking the design of exhaust gas temperature remote monitoring sub-system as an example, MATLAB programming was used for data simulation and verification. The applying of the system on board a real ship shows that it has a high working rate, a reliable and safe storage mode and a self- adaptive process.


2013 ◽  
Vol 465-466 ◽  
pp. 423-427 ◽  
Author(s):  
Mohd Herzwan Hamzah ◽  
Abdul Adam Abdullah ◽  
Agung Sudrajat ◽  
Nur Atiqah Ramlan ◽  
Nur Fauziah Jaharudin

Nowadays, many researches are conducted to produce alternative fuel. In order to overcome increasing price of fossil fuel and environmental issues, fuel from natural sources such as palm, rapeseed and jathropa are increasingly being utilized to produce bio-fuel. Similar as natural source, waste product such as plastics and tires also can be processed to produce alternative fuel. In this paper, engine performance of diesel engine operating with 100% waste plastic disposal fuel (WPDF) is analyzed and compared to diesel fuel. The experiment is conducted using single cylinder YANMAR TF120M diesel engine which is operating at variable speed and constant load. The performance parameters that analyzed in the experiment are engine power, torque, combustion pressure and exhaust gas temperature. Results of the experiment shows that waste plastic disposal fuel (WPDF) potentially can be use as alternative fuel in diesel engine. However, based on the data obtained, performance of diesel engine operating with WPDF is lower compared to diesel fuel.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3497 ◽  
Author(s):  
Cherng-Yuan Lin ◽  
Shih-Ming Tsai

As a derivative product of bio-glycerol, this study first uses solketal as a combustion improver for enhancing diesel engine characteristics. The emulsions of nanometer- and micrometer-sized droplets of solketal, which disperse evenly in the ultra-low sulfur diesel (ULSD), are formed by the effects of microwave irradiation. The performance of diesel engine fueled with the nanoemulsion of ULSD with scattered solketal droplets is analyzed and compared to that with the microemulsion. The experimental results show that the nanoemulsions can form when over 15 wt. % surfactant mixtures of Span 80 and Tween 80 and less than 5 wt. % solketal are mixed and emulsified with the remaining ULSD content, which acts as the continuous phase of the emulsions. The nanoemulsions are observed to have significantly lower brake-specific fuel consumption (bsfc) and higher fuel conversion efficiency and exhaust gas temperature than those of the microemulsions and the neat ULSD. However, the bsfc of the nanoemulsions increases with greater engine speed and gradually approaches those of the latter two test fuels. In addition, the dispersed solketal droplet sizes are mostly concentrated around 127 nm with peak intensity of 12.65% in the nanoemulsions. The microwave-assisted formation used in this study is found to successfully produce the nanoemulsions in which all of the dispersed droplet sizes are much smaller than 1000 nm.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2546
Author(s):  
Saddam H. Al-lwayzy ◽  
Talal Yusaf ◽  
Khalid Saleh ◽  
Belal Yousif

Microalgae is considered as an excellent potential renewable source of fuel in many forms including powder or slurry. A high percentage of emulsified water in the fuel is reported to reduce diesel engines’ emissions such as NOx, but that will compromise the engine output power. Using microalgae powder as an additive to enhance the emulsified water fuel heating value is the main objective of this work. Diesel engine combustion, vibration, performance and emissions were evaluated for pure cottonseed biodiesel (CS-B100), emulsified water 20% (vol.) in cottonseed biodiesel (CSB-E20) and emulsified water 20% (vol.) containing Fresh Water Microalgae Chlorella Vulgaris (FWM-CV) in cottonseed biodiesel (CSB-ME20). The emulsified water fuels showed a reduction in in-cylinder pressure, vibration, brake power, torque, exhaust gas temperature, CO2 and NOx, while BSFC and O2 were higher than the pure biodiesel (CS-B100). CSB-ME20 produced higher power and torque than CSB-E20 due to the presence of microalgae in the fuel that increased the energy content of the fuel.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5879
Author(s):  
K. M. Akkoli ◽  
N. R. Banapurmath ◽  
Suresh G ◽  
Manzoore Elahi M. Soudagar ◽  
T. M. Yunus Khan ◽  
...  

The engine performance has been improved by modifying the combustion chamber shape of the diesel engine for dual-fuel operation with liquid fuel and producer gas (PG). The combined effect of gaseous fuel from redgram stalk and combustion chamber type on the emission and performance of blended-fuel of diesel and HOME biodiesel–PG has been investigated. In this experimental study, four varieties of combustion chambers hemispherical (HCC), low swirl (LSCC), dual swirl (DSCC), and toroidal re-entrant (TRCC) were analyzed comprehensively. The results presented that the TRCC configuration with a given nozzle geometry has 9% improved brake thermal efficiency (BTE) and 10.4% lower exhaust gas temperature (EGT). The smoke, unburnt hydrocarbon (UBHC), and carbon monoxide (CO) decreased by 10–40%, but a 9% increase in nitrogen oxides (NOX) emission levels was observed with TRCC. The delay period and combustion period were decreased by 5% and 7%. The fuel replacement of about 71% for the diesel–PG combination with HCC and 68% for the HOME–PG combination with TRCC was achieved.


Catalysts ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Yuanqing Zhu ◽  
Qichen Hou ◽  
Majed Shreka ◽  
Lu Yuan ◽  
Song Zhou ◽  
...  

Due to the low temperature and complex composition of the exhaust gas of the marine diesel engine, the working requirements of the selective catalytic reduction (SCR) catalyst cannot be met directly. Moreover, ammonium sulfate, ammonium nitrate, and other ammonium deposits are formed at low temperatures, which block the surface or the pore channels of the SCR catalyst, thereby resulting in its reduction or even its loss of activity. Considering the difficulty of the marine diesel engine bench test and the limitation of the catalyst sample test, a one-dimensional simulation model of the SCR system was built in this paper. In addition, the deactivation reaction process of the ammonium salt in the SCR system and its influencing factors were studied. Based on the gas phase and the surface reaction kinetics, the models of the urea decomposition, the surface denitrification, the nitrate deactivation, and the sulfate deactivation were both constructed and verified in terms of accuracy. Moreover, the formation/decomposition reaction pathway and the catalytic deactivation of ammonium nitrate and ammonium bisulfate, as well as the composition concentration and the exhaust gas temperature range were correspondingly clarified. The results showed that within a certain range, the increase of the NO2/NOx ratio was conducive to the fast SCR reaction and the NH4NO3 formation’s reaction. Increasing the exhaust gas temperature also raised the NO2/NOx ratio, which was beneficial to both the fast SCR reaction and the NH4NO3 decomposition reaction, respectively. Furthermore, the influence of the SO2 concentration on the denitrification efficiency decreased with the increase of the exhaust gas temperature because of increasing SCR reaction rate and reversibility of ammonia sulfate formation, and when the temperature of the exhaust gas was higher than 350 °C, the activity of the catalyst was almost unaffected by ammonia sulfate.


Sign in / Sign up

Export Citation Format

Share Document