scholarly journals Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability

2020 ◽  
Vol 19 (1) ◽  
pp. 349-362
Author(s):  
S.K. Velázquez-Gutiérrez ◽  
E. Alpizar-Reyes ◽  
J. Cruz-Olivares ◽  
J.F. Barrera-Pichardo ◽  
M.E. Rodríguez-Huezo ◽  
...  
2013 ◽  
Vol 49 (3) ◽  
pp. 537-547 ◽  
Author(s):  
Gislene Mari Fujiwara ◽  
Ranieri Campos ◽  
Camila Klocker Costa ◽  
Josiane de Fátima Gaspari Dias ◽  
Obdulio Gomes Miguel ◽  
...  

Stigmasterol - a plant sterol with several pharmacological activities - is susceptible to oxidation when exposed to air, a process enhanced by heat and humidity. In this context, microencapsulation is a way of preventing oxidation, allowing stigmasterol to be incorporated into various pharmaceutical forms while increasing its absorption. Microparticles were obtained using a blend of polymers of sodium alginate, starch and chitosan as the coating material through a one-stage process using the external gelation technique. Resultant microparticles were spherical, averaging 1.4 mm in size. Encapsulation efficiency was 90.42% and method yield 94.87%. The amount of stigmasterol in the oil recovered from microparticles was 9.97 mg/g. This technique proved feasible for the microencapsulation of stigmasterol.


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 920 ◽  
Author(s):  
Nurhanisah Othman ◽  
Mas Masarudin ◽  
Cha Kuen ◽  
Nurul Dasuan ◽  
Luqman Abdullah ◽  
...  

The combination of compounds with different classes (hydrophobic and hydrophilic characters) in single chitosan carrier is a challenge due to the hydrophilicity of chitosan. Utilization of l-ascorbic acid (LAA) and thymoquinone (TQ) compounds as effective antioxidants is marred by poor bioavailability and uptake. Nanoparticles (NPs) solved the problem by functioning as a carrier for them because they have high surface areas for more efficient delivery and uptake by cells. This research, therefore, synthesized chitosan NPs (CNPs) containing LAA and TQ, CNP-LAA-TQ via ionic gelation routes as the preparation is non-toxic. They were characterized using electron microscopy, zetasizer, UV–VIS spectrophotometry, and infrared spectroscopy. The optimum CNP-LAA-TQ size produced was 141.5 ± 7.8 nm, with a polydispersity index (PDI) of 0.207 ± 0.013. The encapsulation efficiency of CNP-LAA-TQ was 22.8 ± 3.2% for LAA and 35.6 ± 3.6% for TQ. Combined hydrophilic LAA and hydrophobic TQ proved that a myriad of highly efficacious compounds with poor systemic uptake could be encapsulated together in NP systems to increase their pharmaceutical efficiency, indirectly contributing to the advancement of medical and pharmaceutical sectors.


Author(s):  
Castañeda Alvarez Estefania ◽  
Sánchez Leal Ligia

For farmers the use of agrochemicals is the preferred method to control pests and diseases. Considering the market demand for biological control products, the encapsulation could be a competent alternative to current commercial formulations for cellular viability and controlled release. The purpose of this study was to use ionic gelation with sodium alginate, starch and maltodextrin to immobilize Bacillus subtilis and to evaluate the biocontrol effect against Fusarium oxysporum f. sp. lycopersici in vitro. The matrix with a concentration of 2% sodium alginate, 1% starch, and 1% maltodextrin is a suitable method for cellular viability and biological control activity against Fusarium oxysporum f. sp. lycopersici, with a reduction of mycelial growth of 49.6% and a survival rate for Bacillus subtilis of 98.05% (p less than 0.0001).The use of immobilized bacteria as biological control agents are sustainable and effective bio-inputs that could be used at industrial scale and benefit the tomato crops against attack by Fusarium oxysporum f. sp. lycopersici.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


2019 ◽  
Vol 4 (3) ◽  
pp. 77
Author(s):  
Mardiyanto Mardiyanto ◽  
Budi Untari ◽  
Najma Annuria Fithri ◽  
Sofia Sandi ◽  
Zahrul Mawaddah

A study regarding ionic-gelation submicron particle of papaya leaves (Carica papaya L.) extract with lactic acid of weeds potentially for antidiarrhea has been conducted. Preparation of papaya leaves ethanolic extract and lactic acid isolate into particles was done by ionic gelation method. This study aimed to determine: the major compound of extract, the total quercertine of extract, the percent value of encapsulation efficiency of the optimum formula which was varied by (CaOH)2 of the three formulas, and physical properties of particles. Formula 1 was using (CaOH)2 of 12.5 gram; formula 2 (CaOH)2 of 17,5 gram; formula 3 (CaOH)2 of 22.5 gram. The results showed formula 1 as the optimum formula that has the highest %EE. The average %EE values ​​of F1; F2; F3 respectively were 80,82%; 80,41%; 80,31%. The results of particle characterization using the PSA in the optimum formula produced particle size values ​​with an average of 253.6 nm, PDI of 0.218, and zeta potential +8 mV respectively.


2017 ◽  
Vol 119 (11) ◽  
pp. 1600484 ◽  
Author(s):  
Betül Yesiltas ◽  
Pedro J. García-Moreno ◽  
Ann-Dorit M. Sørensen ◽  
Charlotte Jacobsen

Sign in / Sign up

Export Citation Format

Share Document