scholarly journals Theory behind formation of Neutrino and procedure of calculating mass of Neutrino under various circumstances

2017 ◽  
pp. 5076-5077
Author(s):  
Gaurav Sahebrao Dhage

Study of neutrino is very important aspect of particle physics. Neutrino has unique characteristics like zero charge and negligible mass compared to other subatomic particles which makes extremely difficult to analyse and to study behaviour of Neutrino; through experimental studies. So Neutrino is still unknown territory for humankind. Understanding how neutrinos operate is essential for next steps in new physics. As it is difficult to study them experimentally; I am using theoretical approach in this research paper to study Neutrino. In this research paper I have expressed my thoughts and proposed hypothesis. Based on hypothesis I have derived formula for calculation of Neutrino’s mass. In this paper I have also observed some properties Neutrino based on my hypothesis.

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 222
Author(s):  
Maxim Khlopov

A.D. Sakharov’s legacy in now standard model of the Universe is not reduced to baryosynthesis but extends to the foundation of cosmoparticle physics, which studies the fundamental relationship of cosmology and particle physics. Development of cosmoparticle physics involves cross-disciplinary physical, astrophysical and cosmological studies of physics Beyond the Standard model (BSM) of elementary particles. To probe physical models for inflation, baryosynthesis and dark matter cosmoparticle physics pays special attention to model dependent messengers of the corresponding models, making their tests possible. Positive evidence for such exotic phenomena as nuclear interacting dark atoms, primordial black holes or antimatter globular cluster in our galaxy would provide the selection of viable BSM models determination of their parameters.


Author(s):  
Silvia Ferrario Ravasio

AbstractPrecise theoretical predictions are a key ingredient for an accurate determination of the structure of the Lagrangian of particle physics, including its free parameters, which summarizes our understanding of the fundamental interactions among particles. Furthermore, due to the absence of clear new-physics signals, precise theoretical calculations are required to pin down possible subtle deviations from the Standard Model predictions. The error associated with such calculations must be scrutinized, as non-perturbative power corrections, dubbed infrared renormalons, can limit the ultimate precision of truncated perturbative expansions in quantum chromodynamics. In this review, we focus on linear power corrections that can arise in certain kinematic distributions relevant for collider phenomenology where an operator product expansion is missing, e.g. those obtained from the top-quark decay products, shape observables and the transverse momentum of massive gauge bosons. Only the last one is found to be free from such corrections, while the mass of the system comprising the top decay products has a larger power correction if the perturbative expansion is expressed in terms of a short-distance mass instead of the pole mass. A proper modelization of non-perturbative corrections is crucial in the context of shape observables to obtain reliable strong coupling constant extractions.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2019 ◽  
Vol 206 ◽  
pp. 08001
Author(s):  
Tadeusz Lesiak

A future giant electron-positron collider, operating at the energy frontier, is a natural proposal in order to push particle physics into new regime of precise measurements, in particular in the sectors of electroweak observables and Higgs boson parameters. The four projects of such accelerators: two linear (ILC and CLIC) and two circular (FCC and CEPC) are currently in various stages of development. In view of the update of European HEP strategy for particle physics and expectations of important decisions from Japan, China and USA, the next few years will be critical as far as the decisions about the construction of such colliders are concerned. The paper concisely reviews the relevant aspects and challenges of the proposed accelerators and detectors along with the presumed schedules of construction and operation. The motivation and very attractive physics program for new e+e− colliders, spanning in particular perspectives in Higgs, electroweak, and neutrino sectors, together with expectations of searches for New Physics, will be discussed as well.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Minoru Tanaka ◽  
Yasuhiro Yamamoto

Abstract Isotope shift of atomic spectra is considered as a probe of new interaction between electrons and neutrons in atoms. We employ the method of seeking a breakdown of King’s linearity in the isotope shifts of two atomic transitions. In the present work, we evaluate the magnitudes of the nonlinearity using relativistic wave functions and the result is compared with that of nonrelativistic wave functions from our previous work. It turns out that the nonrelativistic calculation underestimates the nonlinearity owing to the new interaction in the mass range of the mediator greater than 1 MeV. Further, we find that the nonlinearity within the standard model of particle physics is significantly magnified by the relativistic effect in the $\text{p}_{1/2}$ state. To get rid of this obstacle in the new physics search, we suggest avoiding $\text{p}_{1/2}$ and that e.g. $\text{p}_{3/2}$ should be used instead.


2013 ◽  
Vol 53 (A) ◽  
pp. 528-533
Author(s):  
Giulio Auriemma

The most interesting cosmological open problems, baryon asymmetry, dark matter, inflation and dark energy, are not explained by the standard model of particle physics (SM). The final<br />goal of the Large Hadron Collider an experimental verification of the SM in the Higgs sector, and also a search for evidence of new physics beyond it. In this paper we will report some of the results obtained in 2010 and 2011, from the LHCb experiment dedicated to the study of CP violations and rare decays of heavy quarks.


2014 ◽  
Vol 29 (37) ◽  
pp. 1440001 ◽  
Author(s):  
Jordi Casanellas ◽  
Ilídio Lopes

During the last century, with the development of modern physics in such diverse fields as thermodynamics, statistical physics, and nuclear and particle physics, the basic principles of the evolution of stars have been successfully well understood. Nowadays, a precise diagnostic of the stellar interiors is possible with the new fields of helioseismology and astroseismology. Even the measurement of solar neutrino fluxes, once a problem in particle physics, is now a powerful probe of the core of the Sun. These tools have allowed the use of stars to test new physics, in particular the properties of the hypothetical particles that constitute the dark matter (DM) of the Universe. Here we present recent results obtained using this approach.


Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 193-207
Author(s):  
Mikhail A. Ivanov ◽  
Jürgen G. Körner ◽  
Pietro Santorelli ◽  
Chien-Thang Tran

Measurements of the branching fractions of the semileptonic decays B → D ( * ) τ ν ¯ τ and B c → J / ψ τ ν ¯ τ systematically exceed the Standard Model predictions, pointing to possible signals of new physics that can violate lepton flavor universality. The unknown origin of new physics realized in these channels can be probed using a general effective Hamiltonian constructed from four-fermion operators and the corresponding Wilson coefficients. Previously, constraints on these Wilson coefficients were obtained mainly from the experimental data for the branching fractions. Meanwhile, polarization observables were only theoretically studied. The situation has changed with more experimental data having become available, particularly those regarding the polarization of the tau and the D * meson. In this study, we discuss the implications of the new data on the overall picture. We then include them in an updated fit of the Wilson coefficients using all hadronic form factors from our covariant constituent quark model. The use of our form factors provides an analysis independent of those in the literature. Several new-physics scenarios are studied with the corresponding theoretical predictions provided, which are useful for future experimental studies. In particular, we find that under the one-dominant-operator assumption, no operator survives at 1 σ . Moreover, the scalar operators O S L and O S R are ruled out at 2 σ if one uses the constraint B ( B c → τ ν τ ) ≤ 10 % , while the more relaxed constraint B ( B c → τ ν τ ) ≤ 30 % still allows these operators at 2 σ , but only minimally. The inclusion of the new data for the D * polarization fraction F L D * reduces the likelihood of the right-handed vector operator O V R and significantly constrains the tensor operator O T L . Specifically, the F L D * alone rules out O T L at 1 σ . Finally, we show that the longitudinal polarization P L τ of the tau in the decays B → D * τ ν ¯ τ and B c → J / ψ τ ν ¯ τ is extremely sensitive to the tensor operator. Within the 2 σ allowed region, the best-fit value T L = 0.04 + i 0.17 predicts P L τ ( D * ) = − 0.33 and P L τ ( J / ψ ) = − 0.34 , which are at about 33% larger than the Standard Model (SM) prediction P L τ ( D * ) = − 0.50 and P L τ ( J / ψ ) = − 0.51 .


2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.


Sign in / Sign up

Export Citation Format

Share Document