scholarly journals Fabrication of alumina short fiber reinforced magnesium composites based on the evaluation of wettability and their compressive strength.

1999 ◽  
Vol 49 (7) ◽  
pp. 291-295 ◽  
Author(s):  
Wen SHI ◽  
Makoto KOBASHI ◽  
Takao CHOH
2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1745
Author(s):  
Waqas Ahmad ◽  
Mehran Khan ◽  
Piotr Smarzewski

Fracture characteristics were used to effectively evaluate the performance of fiber-reinforced cementitious composites. The fracture parameters provided the basis for crack stability analysis, service performance, safety evaluation, and protection. Much research has been carried out in the proposed study field over the previous two decades. Therefore, it was required to analyze the research trend from the available bibliometric data. In this study, the scientometric analysis and science mapping techniques were performed along with a comprehensive discussion to identify the relevant publication field, highly used keywords, most active authors, most cited articles, and regions with largest impact on the field of fracture properties of cement-based materials (CBMs). Furthermore, the characteristic of various fibers such as steel, polymeric, inorganic, and carbon fibers are discussed, and the factors affecting the fracture properties of fiber-reinforced CBMs (FRCBMs) are reviewed. In addition, future gaps are identified. The graphical representation based on the scientometric review could be helpful for research scholars from different countries in developing research cooperation, creating joint ventures, and exchanging innovative technologies and ideas.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sahar Y. Ghanem ◽  
Heba Elgazzar

AbstractFiber Reinforced Polymer (FRP) usage to wrap reinforced concrete (RC) structures has become a popular technology. Most studies about RC columns wrapped with FRP in literature ignored the internal steel reinforcement. This paper aims to develop a model for the axial compressive strength and axial strain for FRP confined concrete columns with internal steel reinforcement. The impact of FRP, Transverse, and longitudinal reinforcement is studied. Two non-destructive analysis methods are explored: Artificial Neural Networks (ANNs) and Regression Analysis (RA). The database used in the analysis contains the experimental results of sixty-four concrete columns under the compressive concentric load available in the literature. The results show that both models can predict the column's compressive stress and strain reasonably with low error and high accuracy. FRP has the highest effect on the confined compressive stress and strain compared to other materials. While the longitudinal steel actively contributes to the compressive strength, and the transverse steel actively contributes to the compressive strain.


Author(s):  
Natalie Rauter

AbstractIn this study a modeling approach for short fiber-reinforced composites is presented which allows one to consider information from the microstructure of the compound while modeling on the component level. The proposed technique is based on the determination of correlation functions by the moving window method. Using these correlation functions random fields are generated by the Karhunen–Loève expansion. Linear elastic numerical simulations are conducted on the mesoscale and component level based on the probabilistic characteristics of the microstructure derived from a two-dimensional micrograph. The experimental validation by nanoindentation on the mesoscale shows good conformity with the numerical simulations. For the numerical modeling on the component level the comparison of experimentally obtained Young’s modulus by tensile tests with numerical simulations indicate that the presented approach requires three-dimensional information of the probabilistic characteristics of the microstructure. Using this information not only the overall material properties are approximated sufficiently, but also the local distribution of the material properties shows the same trend as the results of conducted tensile tests.


2021 ◽  
Vol 33 (5) ◽  
pp. 053107
Author(s):  
Susanne K. Kugler ◽  
Abrahán Bechara ◽  
Hector Perez ◽  
Camilo Cruz ◽  
Armin Kech ◽  
...  

1999 ◽  
Vol 66 (3) ◽  
pp. 709-713 ◽  
Author(s):  
R. S. Feltman ◽  
M. H. Santare

A model is presented to analyze the effect of fiber fracture on the anisotropic elastic properties of short-fiber reinforced composite materials. The effective moduli of the material are modeled using a self-consistent scheme which includes the calculated energy dissipated through the opening of a crack in an arbitrarily oriented elliptical inclusion. The model is an extension of previous works which have modeled isotropic properties of short-fiber reinforced composites with fiber breakage and anisotropic properties of monolithic materials with microcracks. Two-dimensional planar composite systems are considered. The model allows for the calculation of moduli under varying degrees of fiber alignment and damage orientation. In the results, both aligned fiber systems and randomly oriented fiber systems with damage-induced anisotropy are examined.


Sign in / Sign up

Export Citation Format

Share Document