scholarly journals In vitro Antioxidant Activity of Artemisia argyi Powder and the Effect on Hepatic and Intestinal Antioxidant Indices in Broiler Chickens

2020 ◽  
Vol 20 (3) ◽  
pp. 1085-1099
Author(s):  
Pengfei Zhang ◽  
Hongyan Chen ◽  
Binlin Shi ◽  
Fei Zhao ◽  
Xiaoyu Guo ◽  
...  

AbstractThis study was conducted to investigate the in vitro and in vivo antioxidant effect of Artemisia argyi powder (AAP). 240 mixed-sex one-day-old Arbor Acres broilers were randomly divided into five treatment groups, each consisting of six replicates (one replicate per cage) with eight broilers per replicate. Broilers were fed basal diets supplemented with 0, 2.5, 5, 10 and 20 g AAP per kg feed, respectively. The hepatic and intestinal samples were collected on d 21 and 42 for analysis of antioxidant indices and antioxidative enzyme gene expression. The in vitro results showed that the scavenging activity of Artemisia argyi against •OH and DPPH were 34.99±1.11% and 74.12±0.50%, respectively; the ferric reducing power was 2.58±0.03%. The in vivo results showed that dietary 20 g/kg of AAP significantly enhanced the hepatic total antioxidant capacity (T-AOC), catalase (CAT) activity, and glutathione peroxidase (GSH-Px) activity, also decreased the malondialdehyde (MDA) content; dietary10 g/kg of AAP significantly increased the gene expression of superoxide dismutase (SOD) and CAT on d 42. For the duodenum, 10 g/kg of AAP increased SOD activity (P<0.05), and reduced MDA level (P<0.05) on d 21; the gene expression of CAT and SOD were increased in the 20 g/kg of AAP treatment compared with the control group on d 42. For the jejunum, on d 21, the T-AOC level was increased by inclusion of 10 g/kg of AAP, and CAT activity was enhanced significantly at 5, 10, and 20 g/kg of AAP group; dietary AAP significantly decreased MDA level at the concentration of 2.5, 5, 10 and 20 g/kg in contrast with control group on d 42; 5 and 20 g/kg of AAP increased the gene expression of SOD on d 21, and the gene expression of GSH-Px was increased (P<0.05) in 10 g/kg of AAP group on d 42. For the ileum, compared to the control group, 2.5 and 20 g/kg of AAP increased SOD activity (P<0.05); and dietary 10 and 20 g/kg of AAP significantly reduced MDA level; dietary 10 g/kg of AAP increased the gene expression of SOD, CAT and GSH-Px in broilers on d 42. In conclusion, dietary AAP could improve the antioxidant defenses of liver and small intestine, and the best concentration of the AAP improving hepatic and small intestinal antioxidant status was 20 g/kg and 10 g/kg, respectively.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 331
Author(s):  
Jung-Yun Lee ◽  
Tae Yang Kim ◽  
Hanna Kang ◽  
Jungbae Oh ◽  
Joo Woong Park ◽  
...  

Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2009 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Visnja Bogdanovic ◽  
Marija Slavic ◽  
Jasminka Mrdjanovic ◽  
Slavica Solajic ◽  
Aleksandar Djordjevic

Eukaryotic cell survives in predominantly reduced conditions. Homeostasis of cellular redox system is an imperative of cell surviving and its normal metabolism. ROS are well recognized for playing a dual role as both deleterious and beneficial species, since they can be either harmful or beneficial to living systems. These species are mutagenic compounds known to lead to DNA damage, favor cell transformation, and contribute to the development of a variety of malignant diseases. All the effects of oxidants are influenced by the cellular antioxidant defenses. This multilayer system consists of low molecular weight components and several antioxidant enzymes. Superoxide dismutases (SODs) are the only enzymes dismuting superoxide radicals. Mitomycin C, a cross-linking agent, demonstrated genotoxicity in all in vitro and in vivo test systems in mammalian cells and animals. Water-soluble fullerenes are well known as cytotoxic agents for many cell lines in vitro. At the other side, fullerenols are good free radical scavengers and antioxidants both in vitro and in vivo. This paper investigates the effects of fullerenol on survival and fullerenol/ /mytomicine (MMC) treatment on superoxide-dismutase (SOD) activity in CHO-K1 cells. Samples were treated 3 and 24 h with fullerenol (C60(OH)24) at concentration range 0.01-0.5 mg/mL and survival was monitored with dye exclusion test (DET). The activity of total SOD was estimated in samples treated with chosen concentrations of fullerenol and MMC (0.5 and 0.1 mg/mL) after 3 and 24 h of cell incubation. Increasing of C60(OH)24 concentration leads to decreasing of percent of surviving cells 3 and 24 h after incubation. The activity of total SOD enhanced with higher concentration of fullerenol, while decreased in the highest concentration at both experimental points. In samples treated with MMC, as well as in samples treated with fullerenol (0.0625 mg/mL) + MMC was noticed boost in total SOD activity in comparison with controls. Treatment with fullerenol decreased SOD activity in rest of samples treated with MMC. Decreased activity of superoxide-dismutase in almost all samples treated with fullerenol and MMC might be contributed to antioxidative properties of fullerenol. Increased enzyme level at concentration of 0.0625 mg/mL may be due to its prooxidative activity.


2021 ◽  
Author(s):  
Samina Rubnawaz ◽  
Waqas Khan Kayani ◽  
Nosheen Akhtar ◽  
Rashid Mahmood ◽  
Furrukh Mehmood ◽  
...  

Abstract Ajuga bracteosa Wall. ex Benth is an endangered medicinal herb used against different ailments in folklore medicines. Here, we aimed to create a new insight to the fundamental mechanisms of genetic transformation in the ethnomedicinal usage of this plant. We transformed the plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. The transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, and linked the activities with elemental analysis, polyphenol content and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was found most abundant in all transgenic lines (up to 101.26 ± 6 µg/mg). Furthermore, among all tested plant extracts, transgenic line 3 (ABRL3) showed maximum phenolics (13.39 ± 2µg GAE/mg) and flavonoids content (4.75 ± 0.16 µg QE/mg). ABRL3 also demonstrated potent total antioxidant capacity (8.16 ± 1 µg AAE/mg), total reducing power, (6.60 ± 1.17 µg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8µg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 µg/mL), and iron chelating power (IC50 = 154.8 ± 2 µg/mL) among all plants. Transformed plant extracts also produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant properties in in vivo mice model as compared to control untransformed plant material. Additionally, no abnormal behavior or lethality was observed in any animal tested. In conclusion, transgenic regenerants of A. bracteosa pose better pharmacological properties under the effect of rol genes as compared to wild type plants.


2013 ◽  
Vol 25 (1) ◽  
pp. 254 ◽  
Author(s):  
A. Gad ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Hölker ◽  
M. U. Cinar ◽  
...  

The aim of this study was to examine the effect of in vitro culture conditions at specific phases of early embryonic development on the transcriptome profile of bovine blastocysts. Simmental heifers were superovulated and artificially inseminated 2 times with the same frozen–thawed commercial bull semen. Using nonsurgical endoscopic oviductal flushing technology (Besenfelder et al. 2001 Theriogenology 55, 837–845), 6 different blastocyst groups were flushed out at different time points (2-, 4-, 8-, 16-, 32-cell and morula). After flushing, embryos cultured under in vitro conditions until the blastocyst stage. Blastocysts from each group were collected and pooled in groups of 10. Complete in vivo blastocysts were produced and used as control. A unique custom microarray (Agilent) containing 42 242 oligo probes (60-mers) was used over 6 replicates of each group v. the in vivo control group to examine the transcriptome profile of blastocysts. A clear difference in terms of the number of differentially expressed genes (DEG, fold change ≥2, false discovery rate ≤0.05) has been found between groups flushed out at 2-, 4-, and 8-cell (1714, 1918, 1292 DEG, respectively) and those flushed out at 16-, 32-cell and morula stages and cultured in vitro until blastocyst stage (311, 437, 773 DEG, respectively) compared with the complete vivo group. Ontological classification of DEG showed cell death to be the most significant function in all groups. However, the longer time embryos spent under in vitro conditions, the more the percentage of DEG involved in cell death and apoptosis processes are represented in those groups. In addition, genes related to post-translational modification and gene expression processes were significantly dysregulated in all groups. Pathway analysis revealed that protein ubiquitination pathway was the dominant pathway in the groups flushed out at 2-, 4-, and 8-cells but not in the other groups flushed at later stages compared with the in vivo control group. Moreover, retinoic acid receptor activation and apoptosis signalling pathways followed the same pattern. Embryos flushed out before the time of embryonic genome activation and subsequently cultured in vitro were highly affected by culture conditions. Overall, the results of the present study showed that despite the fact that embryos originated from the same source, in vitro culture condition affected embryo quality, measured in terms of gene expression, in a stage-specific manner.


2013 ◽  
Vol 25 (1) ◽  
pp. 212
Author(s):  
G. Machado ◽  
A. Ferreira ◽  
I. Pivato ◽  
A. Fidelis ◽  
J. F. Srpicigo ◽  
...  

This study aimed to compare post-hatching development of Day 7 in vitro and in vivo embryos cultured in recipient uterus until Day 14. For producing in vitro embryos (IVP), oocytes were matured, fertilized (Day 0) and cultured in vitro for 6 days (Day 7) in synthetic oviduct fluid medium supplemented with 5% of fetal bovine serum and incubated at 39°C in 5% CO2 in air. At Day 7, part of IVP blastocysts was transferred to recipient uterus and part was stored for gene expression analysis. As a control group, in vivo embryos were produced after ovarian stimulation, insemination and uterine flushing on Day 7 post insemination. Similarly to the IVP embryos, part of embryos was transferred to recipient uterus and part was stored for gene expression analysis. Day 7 in vivo (n = 53) and IVP (n = 64) expanded blastocysts were transferred to synchronized recipients (10/horn) and were collected by uterine flushing 7 days after transfer (Day 14). Recovered embryos were measured using Motic Image Plus software and evaluated for presence and size of embryonic disc (ED). A trophoblast biopsy was removed and stored for gene expression analysis. For the molecular profile evaluation of Day 7 and Day 14 in vivo and in vitro embryos, 8 genes related with placentation, implantation, oxidative stress, and glucose metabolism (PLAC8, CD9, GLUT-1, GLUT-3, KRT8, MnSOD, HSP70, and INFT, respectively) were quantified by RT-qPCR using ΔΔCT method and CYC-A gene as endogenous control. The recovery rate of Day 14 embryos, analyzed by chi-square test, was higher (P < 0.05) for in vitro than for in vivo embryos, being 50.0% (64/128) and 38.6% (53/137), respectively. No differences (P > 0.05; t-test) were observed in embryo length when comparing Day 14 in vitro (19.1 ± 2.4 mm) and in vivo embryos (24.2 ± 3.7 mm). ED was detected in 25% (16/64) of in vitro and in 26% (14/53) of in vivo embryos. No differences were found (P > 0.05; t-test) in diameter between the two types of embryos (0.3 ± 0.0 mm/in vitro and 0.3 ± 0.0 mm/in vivo). Regarding gene expression, Day 7 IVP embryos showed higher (P < 0.05, Mann–Whitney test) expression of HSP70 and SCL2A1 than in vivo embryos. However, at Day 14 no differences between embryos were observed in transcript levels for any of the studied genes. Therefore, the present study showed that although differences in Day 7 in vitro embryos were observed at the molecular level compared to in vivo counterpart, after transfer to the uterine environment, they showed similar morphology and gene expression profile. These results highlight the importance of evaluating embryos produced by assisted reproductive techniques in later stages of development to have a more precise evaluation of their quality. Financial support: Embrapa, CNPq, CAPES.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Silvia I García ◽  
Ludmila S Peres Diaz ◽  
Maia Aisicovich ◽  
Mariano L Schuman ◽  
María S Landa

Cardiac TRH (cTRH) is overexpressed in the hypertrophied ventricle (LV) of the SHR. Additionally in vivo siRNA-TRH treatment induced downregulation of LV-TRH preventing cardiac hypertrophy and fibrosis demonstrating that TRH is involved in hypertrophic and fibrotic processes. Moreover, in a normal heart, the increase of LV TRH expression alone could induce structural changes where fibrosis and hypertrophy could be involved, independently of any other system alterations. Is well-known the cardiac hypertrophy/ fibrotic effects induced by AII, raising the question of whether specific LV cTRH inhibition might attenuates AII induced cardiac hypertrophy and fibrosis in mice. We challenged C57 mice with AII (osmotic pumps,14 days; 2 mg/kg) to induce cardiac hypertrophy vs saline. Groups were divided and , simultaneously to pump surgery, injected intracardiac with siRNA-TRH and siRNA-Con as its control. Body weight, water consume and SABP were measured daily. As expected, AII significantly increased SABP (p<0.05) in both groups treated , although cardiac hypertrophy (heart weight/body weight) was only evident in the group with the cardiac TRH system undamaged, suggesting that the cardiac TRH system function as a necessary mediator of the AII-induced hypertrophic effect. As hypothesized, we found an AII-induced increase of TRH (p<0.05) gene expression (real-t PCR) confirmed by immunofluorescence that was not observed in the group AII+siRNA-TRH demonstrating the specific siRNA treatment efficiency. Furthermore, AII significantly increase (p<0.05) BNP (hypertrophic marker), III collagen and TGFB (fibrosis markers) expressions only in the group with AII with the cardiac TRH system intact. On the contrary, the group with AII and the cTRH system inhibited, shows genes expressions similar to the saline control group. We confirmed these results by immunofluorescence. Similar fibrotic results were observed with NIH3T3 cell culture where we demonstrated that AII induced TRH gene expression (p<0.05) and its inhibition impedes AII-induced increase of TGFB and III/I collagens expressions telling us about the role of the cTRH in the AII fibrosis effects. Our results point out that the cardiac TRH is involved in the AII-induced hypertrophic and fibrotic effects.


2014 ◽  
Vol 1025-1026 ◽  
pp. 476-481 ◽  
Author(s):  
Jia Wang ◽  
Rui Wen Yang ◽  
Jing Bo Liu ◽  
Song Yi Lin

The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) are important ones of antioxidant defense systems. Malonaldehyde (MDA) is formed as an end product of lipid peroxidation. Soybean peptides possess antioxidant activity. In previous study, the antioxidant activities of soybean peptides were determinedin vitro. The male ICR mice were intragastrically administered by different molecular weight and dose of soybean antioxidant peptides (SAP) for 60 days. Control group was treated with saline by intragastric administration for 60 days. The SOD, GSH-Px, CAT activity and MDA level were determined in serum. The results suggested the SAP of 1-3k Da had the ability to increase significantly GSH-Px and SOD activity and decrease significantly MDA level at different dose (100 and 200 mg/kg/d) compared with control group (P < 0.05). The SAP of 3-10k Da (200 mg/kg/d) enhanced the GSH-Px activity and decreased significantly MDA level compared with the control group (P < 0.05). The SAP of 10-30k Da (200 mg/kg/d) had the lowest MDA level among all the groups. All the SAP groups and positive control group cannot increase the CAT activity.


2014 ◽  
Vol 675-677 ◽  
pp. 1646-1649
Author(s):  
Xu Chen ◽  
Xiao Li Zhou ◽  
Ting Feng Hao ◽  
Yi Ming Zhou ◽  
Ying Xiao ◽  
...  

This study was designed to evaluate the antioxidant activity of samples extracted from Jinhua ham. The activities of SOD and contents of MDA and NO were measured after mice were kept on feeding the four peaks separated by using chromatographic column. Peak-3 obviously enhanced the activity of SOD and MDA. Peak-1 and peak-2 had little influence on the activity of SOD and MDA. Peak-4 decreased their activities. All peaks obviously decreased content of NO. Results showed that these four peaks had excellent antioxidant activity. Finally, influences of sample extracted from ham on SOD activity, MDA content and GSH-PX activity in vitro of mouse liver and heart were also studied. Certain dose of samples would lead the decrease of SOD activity, MDA content and GSH-PX activity. This results showed that the sample have certain oxidant capacity.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhihong Zhao ◽  
Guixiang Liao ◽  
Qin Zhou ◽  
Daoyuan Lv ◽  
Harry Holthfer ◽  
...  

Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells.Methods. Rats were randomized into four groups (n=6per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection.Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro.Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway.


Sign in / Sign up

Export Citation Format

Share Document