A study of rheological behavior for refined rapeseed oil

2013 ◽  
Vol 24 (1) ◽  
pp. 51-54
Author(s):  
Ioana Stanciu

AbstractThe refined rapeseed oil were carefully studied in recent years because they may constitute a raw material for biodegradable lubricants getting organic. These oils are an alternative to synthetic mineral oils. This article presents rheological behavior of refined rapeseed oil. The dynamic viscosity of refined rapeseed oil was determined at temperatures range between 313 - 363 K and shear rates range from 3.3 - 120 s-1. For temperature ranging between 313 - 363 K refined rapeseed oil has a Bingham fluid behavior.

Author(s):  
Ioana Stanciu

Extracted from rapeseed oil was subjected to purification and refining process and then characterized in terms of rheological, ie dynamic viscosity dependence study in terms of speed shear constant temperature. The results show that at 400C, 600C, 800C and 900C dynamic viscosities of oil decreases with shear rate. At higher shear rates of 20s-1 shows lower viscosity oil fluctuations, became almost constant.  


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


2021 ◽  
Vol 37 (1) ◽  
pp. 247-249
Author(s):  
Ioana Stanciu

This article presents the dependence of dynamic temperature viscosity and shear rate for rapeseed oils used as biodegradable lubricant and SAE 10W. The studied rheograms show the dependence of the dynamic shear rate viscosity as well as the dependence of the dynamic temperature viscosity. From the rheograms there is a decrease in the dynamic viscosity with temperature and shear rate for the two oils. The dynamic viscosity of rapeseed oil is most strongly influenced by the shear rate compared to the studied SAE 10W oil. The rheological behavior of rapeseed and mineral oil SAE 10W was studied with the Haake VT 550 viscometer at temperatures between 40 and 1000C.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Yago Soares ◽  
Elyff Cargnin ◽  
Mônica Naccache ◽  
Ricardo Andrade

This work studies the influence of the concentration and oxidation degree on the rheological behavior of graphene oxide (GO) nanosheets dispersed on polyethylene glycol (PEG). The rheological characterization was fulfilled in shear flow through rotational rheometry measurements, in steady, transient and oscillatory regimes. Graphene oxide was prepared by chemical exfoliation of graphite using the modified Hummers method. The morphological and structural characteristics originating from the synthesis were analyzed by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. It is shown that higher oxidation times increase the functional groups, which leads to a higher dispersion and exfoliation of GO sheets in the PEG. Moreover, the addition of GO in a PEG solution results in significant growth of the suspension viscosity, and a change of the fluid behavior from Newtonian to pseudoplastic. This effect is related to the concentration and oxidation level of the obtained GO particles. The results obtained aim to contribute towards the understanding of the interactions between the GO and the polymeric liquid matrix, and their influence on the suspension rheological behavior.


2005 ◽  
Vol 127 (4) ◽  
pp. 370-374 ◽  
Author(s):  
X. B. Chen

In electronics packaging, one of the key processes is dispensing fluid materials, such as adhesive, epoxy, encapsulant, onto substrates or printed circuit boards for the purpose of surface mounting or encapsulation. In order to precisely control the dispensing process, the understanding and characterization of the flow behavior of the fluid being dispensed is very important, as the behavior can have a significant influence on the dispensing process. However, this task has proven to be very challenging due to the fact that the fluids for electronics packaging usually exhibit the time-dependent rheological behavior, which has not been well defined in literature. In the paper a study on the characterization of the time-dependent rheological behavior of the fluids for electronics packaging is presented. In particular, a model is developed based on structural theory and then applied to the characterization of the decay and recovery of fluid behavior, which happen in the dispensing process due to the interruption of process. Experiments are carried out to verify the effectiveness of the model developed.


Author(s):  
Leonard F. Pease ◽  
Arich J. Fuher ◽  
Judith A. Bamberger ◽  
Carolyn A. Burns ◽  
Richard C. Daniel ◽  
...  

Abstract Slurries and sludges across the United States Department of Energy (DOE) complex rank among the most rheologically interesting. Their composition is heterogeneous, spanning a very broad range of particle sizes, densities, and interparticle forces. All exhibit shear thinning, some have yield stresses, and many are thixotropic. Despite the variety, these complex fluids are often represented using the historic Bingham fluid model, which fits higher shear rate data to a simple straight line. The intercept provides a yield stress, which has been a key design parameter in construction of large-scale waste processing facilities. However, many radioactive wastes are simply not Bingham fluids, and this representation extrapolates poorly across low to intermediate shear rates that are characteristic of typical processing conditions. Indeed, processing shear rates as high as 200 1/s, which has been a typical minimum shear rate used in fitting the Bingham fluid model, are seldom encountered in nuclear waste processing. Therefore, more realistic rheological models are necessary to accurately predict waste processing performance. Pacific Northwest National Laboratory (PNNL) recently re-evaluated the rheology of reconstituted Hanford REDOX (reduction-oxidation) process sludge waste against a wide variety of rheological models including the Bingham, Cross, Cross with yield stress, Carreau, biviscous, Herschel-Bulkley (which includes a power law dependence), Casson, and Gay models. They found that all of the models provided a closer fit than the Bingham model and that the biviscous model and Cross with yield stress model were convincing. However, reconstituted Hanford REDOX sludge waste is but one type of DOE waste and a direct contrast, and comparison of these three models against undiluted, unmixed tank waste (actual not simulant) has not been performed previously. Therefore, the purpose of this paper is to evaluate the rheology of actual tank waste with these more accurate rheological models. In this paper, we evaluate select rheological data for slurry samples from Hanford’s AZ-101, AZ-102, and SY-101 waste tanks. In each of these cases, we find that Cross’ model with yield stress and the biviscous model significantly outperform the Bingham fluid model. Furthermore, the AZ-101 data also shows that the shear stress peak at startup significantly exceeds the Bingham yield stress, which is commonly observed in the initial moments of rheological measurements on simulants. Remarkably, Cross’ model may empirically accommodate an initial spike in shear stress at modest shear rates. These are important observations because computational and analytical fluid dynamics simulations rely on rheological constitutive models for accurately and conservatively predicting waste processing performance. These findings suggest the need for better rheological modeling of and validation against radioactive waste.


2003 ◽  
Author(s):  
X. B. Chen ◽  
W. J. Zhang ◽  
G. Schoenau ◽  
B. W. Surgenor

To effectively control the dispensing process by which fluids are delivered onto substrates in electronics packaging, one of the key issues is to understand and characterize the flow behavior of the fluids being dispensed. However, this task has proven to be a demanding one as the fluids used for electronics packaging usually exhibit the time-dependent rheological behavior, which has not been well documented in the literature. In this paper, the characterization of time-dependent rheological behavior of fluids is studied. In particular, a model using the structural theory is proposed and applied to the characterization of the decay and recovery of fluid behavior, which are typically encountered in a dispensing process. Experiments are conducted to validate the proposed model.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Abstract It is nowadays well accepted that the steady state rheological behavior of drilling fluids must be modelled by at least three parameters. One of the most often used models is the yield power law, also referred as the Herschel-Bulkley model. Other models have been proposed like the one from Robertson-Stiff, while other industries have used other three-parameter models such as the one from Heinz-Casson. Some studies have been made to compare the degree of agreement between different rheological models and rheometer measurements but in most cases, already published works have only used mechanical rheometers that have a limited number of speeds and precision. For this paper, we have taken measurements with a scientific rheometer in well-controlled conditions of temperature and evaporation, and for relevant shear rates that are representative to normally encountered drilling operation conditions. Care has been made to minimize the effect of thixotropy on measurements, as the shear stress response of drilling fluids depends on its shear history. Measurements have been made at different temperatures, for various drilling fluid systems (both water and oil-based), and with variable levels of solid contents. Also, the shear rate reported by the rheometer itself, is corrected to account for the fact that the rheometer estimates the wall shear rate on the assumption that the tested fluid is Newtonian. A measure of proximity between the measurements and a rheological model is defined, thereby allowing the ranking of different rheological behavior model candidates. Based on the 469 rheograms of various drilling fluids that have been analyzed, it appears that the Heinz-Casson model describes most accurately the rheological behavior of the fluid samples, followed by the model of Carreau, Herschel-Bulkley and Robertson-Stiff, in decreasing order of fidelity.


2009 ◽  
Vol 614 ◽  
pp. 197-200 ◽  
Author(s):  
Shao Peng Wu ◽  
Gang Liu ◽  
Jin Gang Wang ◽  
Yuan Zhang

In this study, the influence of some inorganic nanoparticles on the properties of bitumen binder was investigated. Three types of particles at nanometer level, calcium carbonate powder, graphite and carbon black, were introduced to modify bitumen respectively. The modified binders were prepared using a laboratory high-shear mixer. A dynamic shear rheometer (DSR) was adopted to characterize the properties of modified binders, including their rheological parameters and dynamic viscosity, over a certain range sweeps of temperatures, frequencies and shear rates. It was found that the addition of the nanoparticles increased the binder’s elasticity at low temperature which might negatively influence its resistance to crack. However the decrease of phase angle at high temperature might improve its deformation resistance. The shear rate dependence of dynamic viscosity for the binders depended on the type of nanoparticle. The research results indicated that the addition of nanoparticles to bitumen binder can change its physical properties to some extent and its potential should be researched further.


Sign in / Sign up

Export Citation Format

Share Document