Drying kinetics and colour change of lemon slices

2014 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Hosain Darvishi ◽  
Mohammad H. Khoshtaghaza ◽  
Saeid Minaei

Abstract The effect of microwave-convective heating on drying characteristics and colour change of lemon slices was investigated. The drying experiments were carried out at 180, 360, 540 and 720Wand at 22°C, with air velocity of 1ms-1. The values of effective moisture diffusivity were found to be in the range between 1.87 10-8 and 3.95 10-8 m2 s-1, and the activation energy was estimated to be 10.91 Wg-1. The drying data were fitted with ten mathematical models available in the literature. The model describing drying kinetics of lemon slices in the best way was found. The colour change of the dried lemon slices was analysed and considered as a quality index affecting the drying quality of the product. The values of lightness/darkness, yellowness/blueness and hue angle increased, while the value of redness/greenness decreased with increasing microwave power.

2018 ◽  
Vol 6 (2) ◽  
pp. 552-565 ◽  
Author(s):  
Eunice Akello Mewa ◽  
Michael Wandayi Okoth ◽  
Catherine Nkirote Kunyanga ◽  
Musa Njue Rugiri

The objective of the present study was to determine the drying kinetics, moisture diffusivity and sensory quality of convective air dried beef. The effect of temperature of drying (30-60°C) and thickness of samples (2.5-10 mm) on the convective thin-layer drying kinetics of beefdried in a cabinet dryer was evaluated. Five semi-theoretical models were fit to the drying experimentaldata with the aim of predicting drying characteristics of beef and fitting quality of models determined using the standard error of estimate (SEE)and coefficient of determination (R2). Determination ofeffective moisture diffusivity (Deff) from the experimental drying datawas done and sensory quality of the optimized dried cooked and uncookedbeef samplesevaluated. Drying time and rate of drying increased with an increasing temperature but decreased with increased slice thickness. However, there was overlapping of drying curves at 40-50°C. Among the selected models, Page model gave the best prediction of beef drying characteristics. Effective moisture diffusivity (Deff) ranged between 4.2337 x 10-11 and 5.5899 x 10-10 m2/s, increasing with an increase in air temperature and beef slice thickness.Of all the sensory parameters evaluated, texture was the only attribute that gave significantly different (P > 0.05) scores between the cooked and uncooked dried beef samples.


Author(s):  
Monica Premi ◽  
Harish Sharma ◽  
Ashutosh Upadhyay

Abstract The present study examines the effect of air velocity on drying kinetics of the drumstick leaves in a forced convective dryer. The drumstick leaves were dried in the temperature range of 50–800 C, at different air velocity (Dv) of 0.5 and 1.3 m/s. The results indicated that drying temperature and air velocity are the factors in controlling the drying rate. Experimental data obtained for the samples for color, drying rate and drying time proved that air velocity of 1.3 m/s yielded the product superior in terms of both quality and energy efficiency as compared to the samples at 0.5 m/s. Activation energy for drumstick leaves dried with air velocity, 0.5 and 1.3 m/s was 12.50 and 32.74 kJ/mol respectively. The activation energy relates similarly with the effective moisture diffusivity which also increased with increase in air velocity and temperature.


2019 ◽  
Vol 25 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Azmi Kipcak ◽  
İbrahim Doymaz ◽  
Emek Moroydor-Derun

As an alternative to fish and beef, blue mussels (Mytilus edulis) can be consumed due to their high protein content. In this study, the drying kinetics and quality changes (cook loss, area shrinkage and colour change) in whole blue mussels were investigated with several infrared power levels between 88?146 W. Various thin-layer drying models were applied to the blue mussel and the Midilli et al., model best fits the experimental data (R2: 0.999150?0.999750, ?2: 0.000104?0.000030, RMSE: 0.008309?0.004797). The effective moisture diffusivity was determined to be between 4.24?10-9 and 1.10?10-8 m2/s. The activation energy was found to be 20.85 kW/kg. The cook loss and area shrinkage increased with increasing power level and drying time. Most cook loss (30%) and area shrinkage (30%) were obtained between 15-23 min and 8-20 min of drying time, respectively. The colour change was slightly affected by the change in infrared power level.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed A. ElKhodiry ◽  
Shaima R. Suwaidi ◽  
Melika Taheri ◽  
Hams Elwalid ◽  
Dina ElBaba ◽  
...  

The drying kinetics of eggplant were studied experimentally in a laboratory-scale fluidized bed dryer. Experiments were conducted at drying temperatures of 60, 70, and 80°C and at constant air velocity of 3.10 ms−1. The drying rate and moisture ratio were determined as a function of time. At any given temperature, only the falling rate period was observed during the drying process. Effective moisture diffusivity was in the range 2.667–4.311 × 10−8 m2/s while activation energy of 23.5 kJ mol−1 was obtained from the Arrhenius equation. The experimental moisture ratio data was fitted to ten mathematical models. Statistical analysis showed that the by Demir et al. has the best fit quality. In terms of product quality, the dried samples had low rehydration ratio of 4.889. In addition, compared to direct sunlight drying, the dried product from the fluidized bed dryer exhibited better color quality.


2014 ◽  
Vol 16 (4) ◽  
pp. 60-65 ◽  
Author(s):  
F. Sabet Sarvestani ◽  
A. Rahimi ◽  
M.S. Hatamipour

Abstract In this study, the thin-layer drying characteristics of Figs (Ficus carica) are investigated in a pilot scale forced convective dryer. Experiments carried out under various operating conditions including air temperature (40, 50, 60, 70°C), air velocity (0.65, 2.1, 3.45, 4.85 m/s) and air humidity (0.005, 0.010, 0.015 kg/kg) and the effects of these operating conditions on the drying kinetics and the drying time determined. The obtained kinetics data are fitted into a conceptually developed model. The equilibrium moisture content of the dried figs is determined at different values of temperature and relative humidity of air. The values of effective moisture diffusivity (Deff) are obtained from the Fick’s second law and a temperature-dependent relation is proposed for this parameter.


Author(s):  
Amir Hossein Mirzabe ◽  
◽  
Gholam Reza Chegini ◽  

Sunflower seeds and oil in food and agricultural processing are of great importance. Dried sunflower petals are the most important parts of the sunflower plant that have economic value. Thin-layer drying experiments were performed in a laboratory scale hot-air dryer. The results indicated that with increasing drying temperature and air velocity, time of drying reduces and in most cases, the logarithmic model had the best performance for modeling the drying kinetics. The calculated values of the effective moisture diffusivity varied from 3.16627 ×10-13 to 1.32860 ×10-12 m2 s-1 and the values of the activation energy for air velocities of 0.4 and 0.8 m s-1 were equal to 51.21 and 42.3 kJ mol-1, respectively. Also, to verify whether the production and sale of sunflower petals can be cost effective, economic analysis was done. This analysis showed that drying of sunflower petals is profitable process and the generated revenue can even surpass the revenue from the sale of sunflower seeds.


2008 ◽  
Vol 19 (2) ◽  
pp. 127 ◽  
Author(s):  
S.B. BAKAL ◽  
K.H. GEDAM ◽  
G.P. SHARMA

In developed countries, more than 50% potatoes are consumed as processed products. As drying is the vital phenomenon in processing, it is necessary to investigate the drying characteristics and its kinetics. In this experimental study, drying kinetics of Potato in two different shape of cuboidal & cylindrical with three aspect ratio was investigated as a function of drying conditions. Experiments were conducted using air temperatures of 50, 60 and 70 ºC, at velocity of 7 ms-1. The experimental moisture data were fitted to Page and simple models available in the literature, and a good agreement was observed. The Page model gave better fit than simple model. In the ranges covered, the values of the effective moisture diffusivity, Deff were obtained between 2.278 × 10-9 to 3.314 × 10-8 m2s-1 from the Fick's diffusion model. Using Deff, the value of activation energy (Ea) was determined assuming the Arrhenius-type temperature relationship.


2019 ◽  
Vol 805 ◽  
pp. 116-121
Author(s):  
Pathiwat Waramit ◽  
Apinunt Namkhat ◽  
Umphisak Teeboonma

This paper studied the influence of porous burner effect on drying kinetics of Nile tilapia drying using stainless steel mesh porous burner as heat source. Drying kinetics was analyzed by determination of drying rate (DR), drying specific energy consumption (SEC) and dryer thermal efficiency (). In this study, the stainless steel mesh was used as porous media with porosity of 10, 20 and 50 pore per inch (PPI), drying air velocity of 0.5, 1.0 and 1.5 m/s, and drying temperature of 50, 60 and 70 °C, respectively. The results were found that the application of porous burner as heat source can improve the drying kinetics. It was found, at the porosity of 50 PPI, the drying temperature of 70 °C and the air velocity of 1.5 m/s, the moisture ratio of the drying was decreased rapidly, the highest drying rate was found to be 150 g (water evap.)/hr., the lowest drying energy consumption was found to be146.75 MJ/kg, and the thermal efficiency of the dryer was found to increase by 17.79% and the CO and NOx concentration in case of applying porous burner as heat source is lower than without porous burner.


2021 ◽  
Vol 8 (2) ◽  
pp. 53-62
Author(s):  
Hendri Syah ◽  
Armansyah Halomoan Tambunan ◽  
Edy Hartulistiyoso ◽  
Lamhot Parulian Manalu

The objectives of this study were to determine a suitable thin layer drying model to describe the drying kinetics of Guazuma ulmifolia leaves and determine the mass transfer parameters of Guazuma ulmifolia leaves. The drying of Guazuma ulmifolia leaves was conducted in a laboratory scale dryer with various temperature (40oC, 50oC, and 60oC) and relative humidity (30%, 40%, 50% and 60%). Five drying models, namely, Newton, Henderson and Pabis, Page, Midilli-Kucuk, and Verma et al. were fitted to the drying data. The drying curve of guazuma leaves did not show a constant drying period during the drying period. The models suitability were compared base on coefficient of determination (R2), root square mean errors (RSME), and reduced mean square of deviation (X2). It was found that, among the models evaluated, the Midilli and Kucuk model is the best to describe the drying kinetics of Guazuma ulmifolia leaves. The effective moisture diffusivity was found to be in the range of 10-13 – 10-12 m2/s and the convective mass transfer coefficient was in the range of 10-9 – 10-10 m/s. The activation energy value was found to be 89.21 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document