scholarly journals Seasonal variation of algal diversity with reference to water quality in Jagadishpur Reservoir, Nepal

2021 ◽  
Vol 21 (4) ◽  
pp. 189-199
Author(s):  
Sajita Pokhrel ◽  
Narayan Prasad Ghimire ◽  
Shiva Kumar Rai

Abstract The study of the importance of physicochemical parameters of water for algal growth and development in Jagdishpur Reservoir was carried out in the present research. Occurrence of algal species and values of water quality parameters also indicate the ecological nature and the present status of the reservoir. Water samples were collected from Jagdishpur Reservoir in Kapilvastu District (Nepal), in two seasons (wet and dry). The following physicochemical parameters of water were analyzed: temperature, pH, dissolved oxygen, alkalinity, concentration of nitrates and phosphates, free CO2, hardness, conductivity, total dissolved solids. The values of free CO2, hardness, phosphate, temperature, and dissolved oxygen were high in wet season while alkalinity, nitrate, conductivity and total dissolved solid were high in dry season. Altogether 81 algal species belonging to 53 genera and 6 classes were recorded. Higher number of algal species was recorded in the dry season rather than in the wet season. The highest number of species was noted among Chlorophyceae, followed by Cyanobacteria > Bacillariophyceae > Euglenophyceae > Crysophyceae and Dinophyceae. Cosmarium had the highest number of species (13) among all genera. During the wet season, Cosmarium, Calothrix and Phormidium were the genera with the highest number of species while Bulbochaete, Trachelomonas and Gomphonema were genera with the lowest number of species. During the dry season, Cymbella, Cosmarium and Rhopalodia were genera with highest number of species while Euglena, Gloeotrichia and Trachelomonas were genera with lowest number of species. Algal diversity was positively correlated with the increase of alkalinity, conductivity and TDS, while negatively correlated with free CO2, hardness, concerntration of phosphates and nitrates, DO, pH and temperature. Shannon–Weiner diversity index value was higher during the dry season than in the wet season.

2021 ◽  
pp. 1-22
Author(s):  
Nguyen T. Giao ◽  
Huynh T.H. Nhien ◽  
Truong H. Dan

The use of zoobenthos to evaluate water quality has gained considerable interest due to its low cost and environmental friendliness. This study analyzed water and zoobenthos samples at 13 sites in the water bodies in An Giang province in the rainy season (on March) and dry season (on September) in 2018. The results showed that the surface water was contaminated by organic matters, suspended solids and coliforms. There was occurrence of 28 species of zoobenthos divided into five classes including Oligochaeta, Polychaeta, Insecta, Gastropoda, and Bivalvia in which Bivalvia was the most diverse class accounting for 75%. The densities of zoobenthos in the dry and wet season were from 30 divided into three clusters for the dry season and six clusters for the rainy season indicating seasonal variation of zoobenthos composition possibly due to variance of water and sediment characteristics. The results of Pearson correlation indicated that the composition of zoobenthos was strongly correlated with temperature, pH, N-NH4+ and N-NO3-. Using water quality index (WQI), Shannon-Wiener diversity index (H’) and associated average score per taxon (ASPT) for water quality assessment revealed that water quality ranges from medium (from α to β- mesosaprobe) to heavy pollution (Polysaprobe). There was inconsistency between using physicochemicals and diversity index of zoobenthos for water quality identification leading to the use of zoobenthos for water indication could result in misadjustment of water quality. Further study should investigate the relationship between zoobenthos and water quality in different ecological areas to better indicate role of zoobenthos in quick diagnose water quality.


2015 ◽  
Vol 41 (1) ◽  
pp. 13-19
Author(s):  
Kaniz Fatema ◽  
Wan Maznah Wan Omar ◽  
Mansor Mat Isa

Water quality in three different stations of Merbok estuary was investigated limnologically from October, 2010 to September, 2011. Water temperature, transparency and total suspended solids (TSS) varied from 27.45 - 30.450C, 7.5 - 120 cm and 10 -140 mg/l, respectively. Dissolved Oxygen (DO) concentration ranged from 1.22-10.8 mg/l, while salinity ranged from 3.5-35.00 ppt. pH and conductivity ranged from 6.35 - 8.25 and 40 - 380 ?S/cm, respectively. Kruskal Wallis H test shows that water quality parameters were significantly different among the sampling months and stations (p<0.05). This study revealed that DO, salinity, conductivity and transparency were higher in wet season and TSS was higher in dry season. On the other hand, temperature and pH did not follow any seasonal trends.Bangladesh J. Zool. 41(1): 13-19, 2013


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2021 ◽  
Vol 15 ◽  
pp. 117863022110610
Author(s):  
Wubalem Genanaw ◽  
Girum Gebremeskel Kanno ◽  
Dawit Derese ◽  
Mekonnen Birhanie Aregu

In Ethiopia, most of the coffee processing plants are generating large amounts of wastewater with high pollutant concentrations and discharge directly into the water bodies untreated or partially treated. The main objective of this study was to assess the effects of coffee wastewater discharged to river water quality using physicochemical parameters and macro-invertebrate indices. This study was conducted from November to the end of December 2019. Ten wastewater and river water samples were taken from coffee the processing plant and river. The macro-invertebrate samples were collected by kick sampling technique using a standard hand net. Shannon and Simpson diversity indices were examined at 3 sampling stations. The Pielou evenness index was also determined. It was found that except for TDS all the parameters of the raw wastewater and river water did not comply with the international discharge limit. The mean concentration of Faro coffee processing plant wastewater were BOD5 (2409.6 ± 173.1 mg/L), COD (4302 ± 437 mg/L), TSS (2824.6 ± 428.4 mg/L), TDS (3226 ± 623.6 mg/L), and TS (4183.3 ± 432.9 mg/L). Whereas from Bokaso coffee processing plant were BOD5 (3770 ± 604.4 mg/L), COD (4082.6 ± 921.9 mg/L), TSS (2766 ± 501.7 mg/L), TDS (3017 ± 747.6 mg/L), and TS (3874 ± 471.1 mg/L). A total of 392 macroinvertebrates belonging to 24 families and 7 orders were collected. The benthos assemblage communities in this river were 40, 56, and 296 at downstream 1, downstream 2, and upstream respectively. The value of the Simpson diversity index varies from 0.4 to 0.75. In the same manner, the value of the Shannon diversity index also varied from 0.5 to 1.36. Most of the physicochemical parameters of the raw wastewater were beyond the national and international discharge limits. The quality of Orsha river water downstream was more adversely affected compared to upstream.


2015 ◽  
Vol 19 (2) ◽  
pp. 58-64
Author(s):  
Birendra Gautam ◽  
Rejina Maskey ◽  
Ramesh Prasad Sapkota ◽  
Dharma Raj Dangol

The present research was conducted to study seasonal limnological parameters and record composition pattern of aquatic macro-invertebrates of the Rampur Ghol. GRS-BIOS/ASPT index was used to calculate the water quality class, Shannon Weiner diversity index (H’) and Piélou evenness index (e) were used to determine taxa richness of the macroinvertebrates. Altogether 281 individuals of 14 families and 313 individuals of 18 families were recorded in dry season and rainy season, respectively. Similarly, diversity index and evenness index values were recorded 0.98 and 0.85 in dry season; 1.075 and 0.86 in rainy season. On the basis of different aquatic macro-invertebrates, GRS-BIOS/ASPT Index value of four sampling sites fall in class II (moderately polluted), four sampling sites belong to water quality class IIIII (critically polluted) and remaining two sampling sites belong to water quality class III (heavily polluted). Similarly, in rainy season seven sites fall in water quality class II (moderately polluted) and three sampling sites belong to water quality class II-III (critically polluted).Journal of Institute of Science and Technology, 2014, 19(2): 58-64


2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
ATTOUNGBRE Kouakou Séverin ◽  
NIAMIEN-EBROTTIE Julie Estelle ◽  
KOUAMÉ Kouamé Martin ◽  
BOUSSOU Koffi Charles ◽  
ALIKO N’Guéssan Gustave ◽  
...  

The objective is to study the phytoplankton community of Dohou Lake in order to contribute to the knowledge of its ecological quality. For this purpose, monthly samplings were carried out annually between October 2017 and September 2018. The studied physicochemical parameters (Temperature, Electrical conductivity, pH, Dissolved oxygen, Transparency, Depth, Total nitrogen, Nitrate, Nitrite, Total phosphorus) varied significantly over time. During the rainy season months, Dohou Lake is influenced by high values of total phosphorus, total nitrogen, conductivity, nitrate, pH, transparency and depth. However, in the dry season, the lake is characterized by high values of temperature, nitrite, dissolved oxygen and conductivity. For the phytoplankton community, 373 phytoplankton taxa divided into 111 genera, 51 families, 24 orders, 11 classes and 7 phyla (Chlorophyta, Euglenophyta, Cyanobacteria, Bacillariophyta, Pyrrophyta, Chrysophyta and Xanthophyta) have been identified. Chlorophyta with 50.67% is the most represented in the taxonomic richness of the environment. Total phytoplankton densities oscillate between 100 105 cells / L (August) and 321 105 cells / L (February) with high proportions of Cyanobacteria greater than 45% during each month of the rainy season. The highest values of Shannon and Equitability diversities are observed during the dry season months.


2015 ◽  
Vol 6 (1) ◽  
pp. 179-186
Author(s):  
Akoteyon ◽  
S Isaiah

Water samples collected from fifteen hand dug wells in November (dry season), 2011 and July (Wet season), 2012 using random sampling technique. In situ parameters were measured for pH, electrical conductivity, total dissolved solids using portable meters. Heavy metals were analyzed for; Fe, Cu, Zn, Cd, Pb, and Cr using Atomic Absorption Spectrophotometer (AAS). The study aimed at examining the spatial variations in groundwater quality around dumpsite in Igando using paired sample T-test statistical technique. The result shows that the measured pH values were below the minimum WHO standard for drinking water quality in wet and dry seasons in about73.3% and 26.7% respectively. Also, approximately, 13.3% of EC, and 6.7% exceeded the prescribed standard limit of WHO in dry and wet seasons respectively. Concentration of Fe exceeded drinking water quality in all the sampling locations during wet season and only about 46.7% in dry season. Pb, Zn, and Cu exceeded WHO limit in about 86.7%, 80%, and 26.7% respectively in dry season. Concentration of Pb, Cd , Cu and Cr were under detection limit in all the locations except at locations G2 for Cu in wet season. The paired samples statistics and correlation revealed that the mean values of all the parameters were higher in dry season with the exception of Fe. No significant correlations exist among the paramet er for both seasons at p<0.05. The paired T-test show significant seasonal variations among four heavy metals including Fe, Cd, Pb and Zn.The study concluded that, samples in dry season are of low quality compared to wet. The study recommends public enlightenment on solid waste disposal, controlled anthropogenic activities, and treatment /recycling of waste to prevent heavy metal from leaching unto the sub-surface.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22063 J. Environ. Sci. & Natural Resources, 6(1): 179-186 2013


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Kanga Idé Soumaila ◽  
Naimi Mustapha ◽  
Chikhaoui Mohamed

The aim of this study is to access the quality of monitored rivers and to map the polluted river sections in the Sebou basin using Geographic Information System (GIS). The potential causes of water quality variation will also be added for suitable measures to be taken. A Water Quality Index (WQI) which developed in Morocco was applied to 17 river water quality monitoring stations with data on 6 parameters (Dissolved oxygen (DO), ammonium ion (NH4 + ), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), fecal coliforms (FC) and total phosphorus (TP)) collected twice during the wet and dry season over 1990-2017 period. The result shows that river water quality is classified as bad, very bad and medium at 59% of the monitoring stations, while 41% are considered as good to excellent. Interpolation of mean values of overall WQI of the 17 river water quality monitoring stations, revealed evidence of quality degradation along several kilometers of most river sections in the Sebou basin. The correlation matrix between the sub-indices of water quality parameters and the overall WQI showed high positive correlation coefficients and highlights the contribution to water quality degradation as follows: TP (𝑟 = +0.96 ) ≥ NH4 + (𝑟 = +0.96 ) > BOD5 (𝑟 = +0.94) > COD (𝑟 = +0.86) > FC (𝑟 = +0.83) > DO (𝑟 = +0.79). The sections of Fès, Innaounene Rivers, and an extended stretch of Tizguit River must no longer be used for irrigation. River water quality is overall of better quality in the wet season compared to the dry season. Simple linear regressions between the seasonal water quality variation and the overall WQI showed higher coefficients of determination R 2 (0.67 and 0.60) between dry season WQI and the overall WQI and between wet season WQI and the overall WQI respectively. It is clear that discharges of industrial and domestic wastewater during the dry season and agricultural activities are most likely to be the causes of the degradation of river water quality.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

ABSTRACT Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton growth particularly diatom. This study aimed to determine DSi concentration seasonally in waters of the western coast of South Sulawesi in relation to coastal water quality indicator. Water, chlorophyll-a, and diatom samples were collected from the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season of 35.2-85.2 µM than in the other seasons (transitional season: 10.8-68.4 µM, dry season: 9.59-24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x107 cell/m3 in the Pangkep river, 2.3x107 cell/m3 in the Tallo river, and 1.3 x 107 cell/m3 in the Maros river. Chaetoceros, Nitzschia, and Rhizosolenia dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m3, while in the Maros and Pangkep waters of 1.40±1.06, and 2.72±1.94  mg/m3, respectively. There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggested that DSi become a non-limiting factor for the diatom growth and potentially reduce the water quality via eutrophication and diatom blooms. Keywords: dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

<p><strong><em>ABSTRACT</em></strong></p> <p><em>Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton</em><em> </em><em>growth particularly diatom</em><em>.</em><em> This study aimed to </em><em>determine</em><em> DSi</em><em> </em><em> concentration </em><em>seasonally </em><em>in waters of the western coast of South Sulawesi in relation to coastal water quality</em><em> indicator. Water, c</em><em>hlorophyll-a</em><em>,</em><em> and diatom samples were collected </em><em>from</em><em> the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season </em><em>of</em><em> 35.2</em><em>-</em><em>85.2 µM than in the other seasons (transitional season: 10.8</em><em>-</em><em>68.4 µM, dry season: 9.59</em><em>-</em><em>24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x10<sup>7</sup> cell/m<sup>3</sup> in the Pangkep river, 2.3x10<sup>7</sup> cell/m<sup>3</sup> in the Tallo river, and 1.3 x 10<sup>7</sup> cell/m<sup>3</sup> in the Maros river. <span style="text-decoration: underline;">Chaetoceros,</span> <span style="text-decoration: underline;">Nitzschia</span>, and <span style="text-decoration: underline;">Rhizosolenia </span>dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m<sup>3</sup></em><em>, </em><em>while in the Maros </em><em>and Pangkep </em><em>waters </em><em>of</em><em> 1.40±1.06</em><em>, and </em><em>2.72±1.94  mg/m<sup>3</sup>,</em><em> respectively.</em><em> There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggest</em><em>ed</em><em> that DSi become a non-limiting factor for the </em><em>diatom </em><em>growth </em><em>and potentially reduce the water quality via</em><em> eutrophication and diatom blooms. </em></p> <p><strong> </strong></p> <strong><em>Keywords: </em></strong><em>dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi</em>


Sign in / Sign up

Export Citation Format

Share Document