Molecular studies on pig cryptosporidiosis in Poland

2014 ◽  
Vol 17 (4) ◽  
pp. 577-582 ◽  
Author(s):  
A. Rzeżutka ◽  
A. Kaupke ◽  
I. Kozyra ◽  
Z. Pejsak

AbstractCryptosporidium intestinal parasites have been detected in farmed pigs worldwide. Infections are usually asymptomatic with a low number of oocysts shed in pig feces. This makes the recognition of infection difficult or unsuccessful when microscopic methods are used. The aim of this study was molecular identification of Cryptosporidium species in pig herds raised in Poland with regard to the occurrence of zoonotic species. In total, 166 pig fecal samples were tested. The examined pigs were aged 1 to 20 weeks. Overall, 39 pig farms were monitored for parasite presence. The detection and identification of Cryptosporidium DNA was performed on the basis of PCR-RFLP and nucleotide sequence analysis of the amplified 18 SSU rRNA and COWP gene fragments. Infected animals were housed in 21 (53.8%) of the pig farms monitored. The presence of Cryptosporidum was confirmed in 46 (27.7%) samples of pig feces. Among positive fecal samples, 34 (29.3%) were collected from healthy animals, and 12 (24%) from diarrheic pigs. Most infected animals (42.1%) were 2 to 3 months old. The following parasite species were detected: C. scrofarum, C. suis and C. parvum. Indeed, asymptomatic infections caused by C. scrofarum were observed in the majority of the herds. Mixed infections caused by C. suis and C. scrofarum were not common; however, they were observed in 8.6% of the positive animals. C. parvum DNA was found only in one sample collected from a diarrheic pig. The application of molecular diagnostic tools allowed for detection and identification of Cryptosporidium species in pigs. The sporadic findings of C. parvum are subsequent evidence for the contribution of pigs in the transmission of cryptosporidiosis from animals to humans.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 221-221
Author(s):  
Yuzhi Li ◽  
Alexander Hernandez ◽  
Rick Carr ◽  
Shelby Dukes ◽  
Maria Lou ◽  
...  

Abstract Swine parasites present challenges for organic pig farmers and represent suboptimal animal health because the use of synthetic anthelmintics is not allowed. The objective of this study was to investigate prevalence and fecal egg counts (FEC) of three intestinal parasites (Ascaris, Trichuris, and Oesophagostomum) on organic pig farms in the United States. Nine farms across 4 states were investigated. Pigs on all farms were raised within no-confinement facilities, had access to the outdoors or pasture except for one farm that housed sows in a hoop barn, and no use of synthetic anthelmintics from birth to market weight for growing/finishing pigs and from the third trimester of gestation for sows. Herd size varied from 12 to 416 (median=50) pigs. Four to 16 fecal samples were collected in each pen or pasture. A total of 186 samples were analyzed for FEC using the concentrated McMaster technique to yield eggs per gram (epg) of fecal samples. Pigs were categorized as breeders (gestating sows of all parity and boars), growing pigs (2 to 5 months old), or finishing pigs (5 months old to market weight). Results indicate that 56%, 89%, and 44% farms were infected with Oesophagostomum, Ascaris, and Trichuris, respectively. Overall, breeders on infected farms had higher (P=0.01) FEC of Oesophagostomum (1,115 epg ± 1,647 SD) than growing (60 epg ± 9.5 SD) and finishing pigs (237 epg ± 234 SD). Growing and finishing pigs had higher (P< 0.001) FEC of Ascaris (1,733 epg ± 1,208 SD for growing pigs; 1,162 epg ± 630 SD for finishing pigs) than breeders (5 epg ± 2.5 SD). Trichuris FEC was relatively low (< 80 epg for pigs in all production stages) compared to other parasites. Results suggest that swine parasite infection is common on organic/alternative farms and strategies to control parasites need to be developed.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 596-600 ◽  
Author(s):  
Binoy Babu ◽  
Gary Knox ◽  
Mathews L. Paret ◽  
Francisco M. Ochoa-Corona

Rose rosette emaravirus (RRV, genus Emaravirus), the causal agent of rose rosette disease, is the topmost pathogen of concern for the rose industry in the United States. The only strategy available for disease management is early identification and eradication of the infected plants. Highly reliable, specific, and sensitive detection assays are thus required to test and confirm the presence of RRV in suspected plant samples. RRV is only a recently characterized virus and hence limits the diagnostic tools available for its early detection. With a U.S. Department of Agriculture (USDA) Specialty Crop Research Initiative (SCRI) project sponsorship, several diagnostic tools including end-point reverse transcription-polymerase chain reaction (RT-PCR) and RT-qPCR assays targeting single and multiple genes targets were developed for routine diagnostics. This review introduces an overall view of the different diagnostic tools developed, which are reliable, highly sensitive, and can be easily implemented for detection and identification in laboratories providing diagnostic services and confirmation of RRV-infected samples.


2005 ◽  
Vol 360 (1462) ◽  
pp. 1813-1823 ◽  
Author(s):  
K.F Armstrong ◽  
S.L Ball

Biosecurity encompasses protecting against any risk through ‘biological harm’, not least being the economic impact from the spread of pest insects. Molecular diagnostic tools provide valuable support for the rapid and accurate identification of morphologically indistinct alien species. However, these tools currently lack standardization. They are not conducive to adaptation by multiple sectors or countries, or to coping with changing pest priorities. The data presented here identifies DNA barcodes as a very promising opportunity to address this. DNA of tussock moth and fruit fly specimens intercepted at the New Zealand border over the last decade were reanalysed using the cox1 sequence barcode approach. Species identifications were compared with the historical dataset obtained by PCR–RFLP of nuclear rDNA. There was 90 and 96% agreement between the methods for these species, respectively. Improvements included previous tussock moth ‘unknowns’ being placed to family, genera or species and further resolution within fruit fly species complexes. The analyses highlight several advantages of DNA barcodes, especially their adaptability and predictive value. This approach is a realistic platform on which to build a much more flexible system, with the potential to be adopted globally for the rapid and accurate identification of invasive alien species.


2015 ◽  
Vol 53 (12) ◽  
pp. 3723-3728 ◽  
Author(s):  
Matthew J. Binnicker

Gastrointestinal disease is a major cause of morbidity and mortality worldwide, especially among young children and immunocompromised patients. Diarrhea may result from infection with a variety of microbial pathogens, including bacteria, viruses, or parasites. Historically, the diagnosis of infectious diarrhea has been made using microscopy, antigen tests, culture, and real-time PCR. A combination of these traditional tests is often required due to the inability to distinguish between infectious etiologies based on the clinical presentation alone. Recently, several multiplex molecular assays have been developed for the detection of gastrointestinal pathogens directly from clinical stool samples. These panels allow for the detection and identification of up to 20 pathogens in as little as 1 h. This review will focus on the multiplex molecular panels that have received clearance from the FDA for the diagnosis of diarrheal disease and will highlight issues related to test performance, result interpretation, and cost-effectiveness of these new molecular diagnostic tools.


Author(s):  
Hari Shankar ◽  
Sobhan Phookan ◽  
Mrigendra Pal Singh ◽  
Ram Suresh Bharti ◽  
Naseem Ahmed ◽  
...  

Abstract Background Malaria elimination requires targeting asymptomatic and low-density Plasmodium infections that largely remain undetected. Therefore we conducted a cross-sectional study to estimate the burden of asymptomatic and low-density Plasmodium infection using conventional and molecular diagnostics. Methods A total of 9118 participants, irrespective of age and sex, were screened for malaria using rapid diagnostic tests (RDTs), microscopy and polymerase chain reaction. Results Among the participants, 707 presented with symptoms and 8411 without symptoms, of which Plasmodium was present in 15.6% (110/707) and 8.1% (681/8411), respectively. Low-density infection was found in 5.1% (145/2818) of participants and 8327 of 9118 were Plasmodium negative. Endemicity was propotional to asymptomatic infections (high endemicity 11.1% [404/3633] vs low endemicity 5.8% [277/4778]; odds ratio [OR] 2.0 [95% confidence interval {CI} 1.7 to 2.4]) but inversely related to low-density infection (high endemicity 3.7% [57/1545] vs low endemicity 6.9% [88/1273]; OR 1.9 [95% CI 1.4 to 2.7]). The spleen rate in children 2–9 y of age was 17.9% (602/3368) and the enlarged spleen index was 1.6. Children between 8 and 14 y showed higher odds for asymptomatic (adjusted OR [aOR] 1.75 [95% CI 1.4 to 2.2]) and low-density infections (aOR 0.63 [95% CI 0.4 to 1.0)] than adults. Conclusions The prevalence of asymptomatic and low-density Plasmodium infection undermines the usefulness of standard diagnostic tools used by health agencies. This necessitates deploying molecular tools in areas where malaria microscopy/RDTs indicate a dearth of infection.


3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Domenico Rizzo ◽  
Nicola Luchi ◽  
Daniele Da Lio ◽  
Linda Bartolini ◽  
Francesco Nugnes ◽  
...  

AbstractThe red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory validations demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind panel. The LAMP assay and the qPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive, and both were more sensitive than the conventional PCR (sensitivity > 103 to the same starting matrix). The visual LAMP protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A. bungii and in the management of its outbreaks.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 293
Author(s):  
Idalécia Cossa-Moiane ◽  
Hermínio Cossa ◽  
Adilson Fernando Loforte Bauhofer ◽  
Jorfélia Chilaúle ◽  
Esperança Lourenço Guimarães ◽  
...  

Cryptosporidium is one of the most important causes of diarrhea in children less than 2 years of age. In this study, we report the frequency, risk factors and species of Cryptosporidium detected by molecular diagnostic methods in children admitted to two public hospitals in Maputo City, Mozambique. We studied 319 patients under the age of five years who were admitted due to diarrhea between April 2015 and February 2016. Single stool samples were examined for the presence of Cryptosporidium spp. oocysts, microscopically by using a Modified Ziehl–Neelsen (mZN) staining method and by using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) technique using 18S ribosomal RNA gene as a target. Overall, 57.7% (184/319) were males, the median age (Interquartile range, IQR) was 11.0 (7–15) months. Cryptosporidium spp. oocysts were detected in 11.0% (35/319) by microscopy and in 35.4% (68/192) using PCR-RFLP. The most affected age group were children older than two years, [adjusted odds ratio (aOR): 5.861; 95% confidence interval (CI): 1.532–22.417; p-value < 0.05]. Children with illiterate caregivers had higher risk of infection (aOR: 1.688; 95% CI: 1.001–2.845; p-value < 0.05). An anthroponotic species C. hominis was found in 93.0% (27/29) of samples. Our findings demonstrated that cryptosporidiosis in children with diarrhea might be caused by anthroponomic transmission.


Sign in / Sign up

Export Citation Format

Share Document