scholarly journals Calculation of the Dynamic Characteristics of Ship’s Aft Stern Tube Bearing Considering Journal Deflection

2020 ◽  
Vol 27 (1) ◽  
pp. 107-115
Author(s):  
Hongjun Yang ◽  
Jun Li ◽  
Xiaolong Li

AbstractDynamic properties are vital for the working reliability of aft stern tube bearings. However, the determination of such properties currently involves several simplifications and assumptions. To obtain its dynamic characteristics accurately, the aft stern tube bearing was divided into several bearing segments. The oil film reaction force was considered in the calculation of shaft alignment, and the journal deflection and actual oil film thickness were obtained accordingly. Subsequently, the perturbed Reynolds equation was solved using the finite difference method when the dynamic characteristics of journal bearings with finite width were evaluated. Then, a calculation program was developed and verified by comparing with the results of other studies. Finally, the dynamic characteristics were calculated under different revolutions. The results showed that the stiffness at the vertical direction of the aft stern tube bearing was several times that of the horizontal direction and varied with the revolutions of the shafting system. These findings can provide the foundation for the precise calculation of the journal trajectory under dynamic conditions, as well as for the evaluation of the oil film thickness. Moreover, the results led to favorable conditions for the accurate calculation of the shafting whirling vibration.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Guohui Xu ◽  
Jian Zhou ◽  
Haipeng Geng ◽  
Mingjian Lu ◽  
Lihua Yang ◽  
...  

Journal misalignment usually exists in journal bearings that affect nearly all the bearings static and dynamic characteristics including minimum oil film thickness, maximum oil film pressure, maximum oil film temperature, oil film stiffness, and damping. The main point in this study is to provide a comprehensive analysis on the oil film pressure, oil film temperature, oil film thickness, load-carrying capacity, oil film stiffness, and damping of journal bearing with different misalignment ratios and appropriately considering the turbulent and thermo effects based on solving the generalized Reynolds equation and energy equation. The results indicate that the oil thermo effects have a significant effect on the lubrication of misaligned journal bearings under large eccentricity ratio. The turbulent will obviously affect the lubrication of misaligned journal bearings when the eccentricity or misalignment ratio is large. In the present design of the journal bearing, the load and speed become higher and higher, and the eccentricity and misalignment ratio are usually large in the operating conditions. Therefore, it is necessary to take the effects of journal misalignment, turbulent, and thermal effect into account in the design and analysis of journal bearings.


2012 ◽  
Vol 550-553 ◽  
pp. 3214-3218
Author(s):  
Jun Yan Zhang ◽  
Shu Kui Han

Based on the unified Reynolds equation model and fast Fourier transform (FFT) method, the lubrication performance of the piston pin bearing for high power density diesel engine was studied by numerical simulation. First of all, through the coupled solving of a unified Reynolds equation and elastic deformation equation, the orbit of journal center for piston pin bearing is investigated. The eccentricity ratio of the piston pin bearing in vertical direction of the piston stroke is smaller, however it is much larger in the downward direction of the piston stroke, which indicate that the below area of the piston pin bearing bears greater load and occurs larger deformation. This is consistent with the reality that the below area of the piston pin bearing is prone to damage and wear. Secondly, the influence of the different bearing clearances and width on the minimum oil film thickness is discussed, The results show that the minimum oil film thickness is increased, while the width of piston pin bearing is increased or the clearance of piston pin bearing is decreased.


2020 ◽  
Vol 103 (1) ◽  
pp. 003685041989771
Author(s):  
Can song Gu ◽  
Zhao cheng Yuan ◽  
Zheng rui Yang ◽  
Jia xin Liu ◽  
Hong liang Li

A flexible multibody dynamic calculation model based on thermo-elasto-hydrodynamic lubrication bearing model was established. This numerical simulation method provided a more realistic turbocharger calculation model and a more reliable theoretical support for studying the dynamic vibration characteristics of the floating ring bearing turbocharger system. In order to fully consider the dynamic characteristics of each component, the behavior of the floating ring bearing was described by generalized incompressible Reynolds equation in thermo-elasto-hydrodynamic lubrication model. The flexible body substructure models were established by the modal synthesis method. Based on this model, the direct mathematical model of the relationship between the eccentricity of the rotor and the oil film clearance on the turbocharger’s surface vibration was established. The influence of eccentricity and oil film thickness on the surface vibration of the turbocharger body was calculated by transient dynamics method. The results showed that the eccentricity of the rotor and the vibration of turbocharger housing were monotonic functions, but the interaction between the whirl of internal and external oil films made the mechanism of the influence of the oil film thickness on the turbocharger body’s vibration complicated. The research provided a new idea for the structural vibration and synchronous noise control of the supercharger.


2011 ◽  
Vol 480-481 ◽  
pp. 980-985
Author(s):  
Yan Shuang Wang ◽  
Ning Ning Jin ◽  
Hai Feng Zhu

A nonlinear dynamics analysis mathematical model for the high-speed cylindrical roller bearing was built up. Dynamic performance parameters were got by Newton - Raphson method . The rotational velocity regularities of rollers were analyzed at different radial loads. The distribution of minimum oil-film thickness and contact load between rollers and bearing ring raceway were obtained. The results showed that number of loaded rollers increased with the increase of radial loads at a certain speed. Rollers slip seriously at lower radial loads. The rotation speed was low. The minimum oil-film thickness between loaded rollers and inner raceways was less than that of outer raceways. The results were compared with the results of SHARBERTH and comparison was made with testing results. It showed that the dynamic characteristics analysis method of high speed cylindrical roller bearing was accurate, reliable,simple and convenient for practical engineering application.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


Author(s):  
Jiacheng Zhou ◽  
Chao Hu ◽  
Ziqiu Wang ◽  
Zhengfa Ren ◽  
Xiaoyu Wang ◽  
...  

By studying dynamic characteristics of the leaf spring system, a new elastic component is designed to reduce the working load and to a certain extent to ensure the linearity as well as increase the amplitude in the vertical and horizontal directions in vibration screen. The modal parameters, amplitudes, and amplification factors of the leaf spring system are studied by simulation and experiment. The modal results show that the leaf spring system vibrates in horizontal and vertical directions in first and second mode shapes, respectively. It is conducive to loosening and moving the particles on the vibration screen. In addition, it is found that the maximum amplitude and amplification factor in the horizontal direction appear at 300 r/min (5 Hz) while those in the vertical direction appear at 480 r/min (8 Hz), which are higher than those in the disc spring system. Moreover, the amplitude of the leaf spring system increases proportionally with the increase of exciting force while the amplification factors are basically the same under different exciting forces, indicating the good linearity of the leaf spring system. Furthermore, the minimum exciting force occurs in the leaf spring system under the same amplitude by comparing the exciting force among different elastic components. The above works can provide guidance for the industrial production in vibration screen.


1949 ◽  
Vol 161 (1) ◽  
pp. 73-79 ◽  
Author(s):  
A. Cameron

In this paper the relation of surface roughness of bearing surfaces to allowable film thickness is studied quantitatively with a simple Michell pad apparatus. The pads used were faced with white metal and ran against mild steel collars. The lubricants studied were water, soap solution, paraffin, and light oil. There was little difference in the frictional behaviour of any of the lubricants, except that the aqueous lubricants would not run with very finely finished steel surfaces. The onset of metal to metal contact was detected by an increase in the frictional drag, and also by the change in electrical conductivity between the pad and collar—an extremely sensitive method. The paper shows that there is, at any rate for this system, a quantitative relation between the total surface roughness of the rubbing surfaces and the calculated oil film thickness both at the initial metal to metal contact and seizure. Initial contact occurs when the outlet film thickness, calculated from normal hydrodynamic theory, falls to three times the maximum surface roughness and seizure occurs when it is double the average roughness.


Sign in / Sign up

Export Citation Format

Share Document