scholarly journals Time Value of Energy as a Low-Cost Energy Efficiency Technique

2020 ◽  
Vol 24 (3) ◽  
pp. 1-10
Author(s):  
Aiman Albatayneh ◽  
Obieda Abueid ◽  
Dariusz Alterman

AbstractEnergy efficiency is one of the most widely used tools for both energy saving and environmental protection against greenhouse gases. Some energy efficiency techniques are being used to reduce energy consumption. This research focuses on optimising the relation of time and energy, where the best scenario of energy-saving for specified applications will be considered with the time required in achieving these scenarios. To implement this, we adopt two engineering applications (car and water pumps) on each application, with specific constraints and parameters to test the time energy relation. It was being found that for both applications, there is an optimum engineering scenario where the least amount of energy (using the extra time to minimise energy consumption) can be achieved while the remaining cases will consume higher energy. For instance, for a specific type of car used in this study, the optimum car speed was found to be between 65–70 km h–1; at this speed, the car consumes the least amount of energy (around 137 MJ when travelling a distance of 100 km). All the speeds less than the optimum speed will consume more energy; the same is true when the speed is increased over the optimum. For the second application using water pumps, it was found that a 1.1 kW pump is the most efficient at pumping a specific amount of water, and using higher or lower rated pumps will consume higher energy levels but correspondingly will reduce the time required to perform the same application. This research emphasised the concept that time can save energy, which is not yet covered in the literature as time value of energy when time is not an essential aspect and can be delayed without affecting the main tasks.

2014 ◽  
Vol 660 ◽  
pp. 1072-1075 ◽  
Author(s):  
Zamri Noranai ◽  
Mohd Hafiz Haidar Mohamad ◽  
Hamidon bin Salleh ◽  
Mohammad Zainal M. Yusof

Energy is an important source of power for human daily activity. Energy efficiency is measured by the productivity of the system which goes through under certain condition as to achieve results at optimum level. The basic purpose of this study is to reduce and save energy consumption in order to determine the energy efficiency of public university library. Thereby saving measures can be identified from the building services installed in the library. From the findings, there are two major system correlates which is mechanical and electrical system. Based on these systems, it could resolve intricacy issues regards to building efficiency by conducting an Energy Saving Measures (ESM) in context of Malaysia’s tropical setting. Lack of supervision and excessive wastage of energy will render inefficient in both systems which would decrease the optimum level of performance and reliability issues. The study emphasizes that energy conservation should be prioritized in order to avoid unregulated energy consumption. Hence, it could focus on the main streamline where energy efficiency is a possible and potential sustainable building in the present and future for better surroundings and standard quality of life.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


2021 ◽  
Vol 263 ◽  
pp. 04025
Author(s):  
Dmitrii Khlopitsyn ◽  
Andrey Rymarov

Energy consumption all over the world is constantly growing. To save energy, new technologies are being developed for the efficient use of energy resources. The goal of all new developments is to use less energy to provide the same level of energy supply for technological processes or buildings. The problem of energy saving is relevant for the ventilation system. Together with the removed air, a large amount of heat is lost, which is not advisable. In order to avoid these losses, heat recuperators began to be used, heating the cold supply air due to the warm air removed from the room. This development belongs to the field of energy saving. The goal is to increase efficiency by reheating the air after the heater with the help of a recuperator for a given temperature difference in the supply air before and after the recuperative heat exchanger. The development is a design of a ventilation unit with air removal and supply air ducts, combined into one housing with a separate, according to the “screw” principle, heat transfer wall, for use in the ventilation system in order to ensure an optimal microclimate in the room. Thus, as a result of using the presented device, the efficiency of the room ventilation unit is increased by reducing the energy consumption for heating the supply air with a heater.


2014 ◽  
Vol 953-954 ◽  
pp. 890-895
Author(s):  
Hui Min Li ◽  
Cun Bin Li ◽  
Zhan Xin Ma

In recent years, with the rapid economic growth, the demand on the amount of energy in China is increasing. So the problem of how to improve the energy utilization efficiency and save energy consumption has to be tackled. The traditional CCR model and BCC model used in the study of provincial energy efficiency do not take the impact of technological progress into consideration. Therefore, the paper uses the generalized DEA method to research the energy utilization efficiency of China’s 29 provinces, that is, to evaluate and analyze the energy utilization efficiency by selecting the capital stock, employment and total energy consumption of China’s provinces as input factors and GDP, per capital GDP as output factors, and then draw tables showing each province’s change of average annual overall efficiency and the pure technology changes, and finally analyze the regularities underlying these changes.


Author(s):  
Ivan M. Gryshchenko ◽  
Mykhailo O. Verhun ◽  
Andrii S. Prokhorovskyi

This article attempts to verify the relevance of building a network of energy knowledge hub centres to tackle the priority objective in enhancing energy efficiency and energy saving management in higher education institutions. It is emphasized that the issues of careful and wise use of fuels and energy resources challenge more government efforts, active use of advanced projects to manage energy saving and energy efficiency through the integrated use of different energy sources. The study argues that to identify the potential for energy saving, setting regulatory indicators of energy consumption, determining the key energy saving measures and target objects in the public sector where energy saving programs are planned to be implemented, there is a need to conduct energy surveys with further developing of energy passports for buildings. In the frameworks of this study, the following research methods were used: abstract and logical analysis – to interpret the essence of energy saving concepts for universities; systemic approach – to identify the specifics of energy saving projects implementation in universities; in-depth analysis and synthesis – to forecast the university development priority area of the "Energy efficiency and energy saving"; system, structural, comparative and statistical analyses – to assess the energy consumption in universities; economic and statistical methods – to evaluate the level and the dynamics of the energy sources use before and after the implementation of project activities; graph-based and analytical methods – to facilitate visual representation and schematic presentation of forecasts for further development of energy efficiency and energy saving systems. The study offers a mechanism to shape a network of energy knowledge hub centres to forecast a priority development area of energy efficiency and energy saving programs in higher education institutions along with providing an overview on the process of energy saving based on energy knowledge hub centres by carrying out the following tasks: project identification, scanning, energy audit, implementation of an action plan, and monitoring. It has been verified that to enhance the energy supply system in the university buildings, the following objectives should be attained: using the energy knowledge hub to forecast the university energy efficiency and energy saving programme, implementing an automated individual heating station with weather regulation and installing new radiator heaters.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


2020 ◽  
Vol 12 (21) ◽  
pp. 8908
Author(s):  
Rubén Garrido-Yserte ◽  
María-Teresa Gallo-Rivera

Higher education institutions (HEIs) have a huge potential to save energy as they are significantly more energy-intensive in comparison with commercial offices and manufacturing premises. This paper provides an overview of the chief actions of sustainability and energy efficiency addressed by the University of Alcalá (Madrid, Spain). The policies implemented have shifted the University of Alcalá (UAH) to become the top-ranking university in Spain and one of the leading universities internationally on environmentally sustainable practices. The paper highlights two key elements. First, the actions adopted by the managerial teams, and second, the potential of public–private collaboration when considering different stakeholders. A descriptive study is developed through document analysis. The results show that energy consumption per user and energy consumption per area first fall and are then maintained, thereby contributing to meeting the objectives of the Spanish Government’s Action Plan for Energy Saving and Efficiency (2011–2020). Because of the research approach, the results cannot be generalized. However, the paper fulfils an identified need to study the impact of HEIs and their stakeholders on sustainable development through initiatives in saving energy on their campuses and highlights the role of HEIs as test laboratories for the introduction of innovations in this field (monitoring, sensing, and reporting, among others).


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 811 ◽  
Author(s):  
Yongmao Xiao ◽  
Qingshan Gong ◽  
Xiaowu Chen

The blank’s dimensions are an important focus of blank design as they largely determine the energy consumption and cost of manufacturing and further processing the blank. To achieve energy saving and low cost during the optimization of blank dimensions design, we established energy consumption and cost objectives in the manufacturing and further processing of blanks by optimizing the parameters. As objectives, we selected the blank’s production and further processing parameters as optimization variables to minimize energy consumption and cost, then set up a multi-objective optimization model. The optimal blank dimension was back calculated using the parameters of the minimum processing energy consumption and minimum cost state, and the model was optimized using the non-dominated genetic algorithm-II (NSGA-II). The effect of designing blank dimension in saving energy and costs is obvious compared with the existing methods.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1097 ◽  
Author(s):  
Isaac Machorro-Cano ◽  
Giner Alor-Hernández ◽  
Mario Andrés Paredes-Valverde ◽  
Lisbeth Rodríguez-Mazahua ◽  
José Luis Sánchez-Cervantes ◽  
...  

Energy efficiency has aroused great interest in research worldwide, because energy consumption has increased in recent years, especially in the residential sector. The advances in energy conversion, along with new forms of communication, and information technologies have paved the way for what is now known as smart homes. The Internet of Things (IoT) is the convergence of various heterogeneous technologies from different application domains that are used to interconnect things through the Internet, thus allowing for the detection, monitoring, and remote control of multiple devices. Home automation systems (HAS) combined with IoT, big data technologies, and machine learning are alternatives that promise to contribute to greater energy efficiency. This work presents HEMS-IoT, a big data and machine learning-based smart home energy management system for home comfort, safety, and energy saving. We used the J48 machine learning algorithm and Weka API to learn user behaviors and energy consumption patterns and classify houses with respect to energy consumption. Likewise, we relied on RuleML and Apache Mahout to generate energy-saving recommendations based on user preferences to preserve smart home comfort and safety. To validate our system, we present a case study where we monitor a smart home to ensure comfort and safety and reduce energy consumption.


Sign in / Sign up

Export Citation Format

Share Document