scholarly journals Optimization of synthesis procedure and structure characterization of manganese tungstate nanoplates

2013 ◽  
Vol 11 (8) ◽  
pp. 1393-1401 ◽  
Author(s):  
Mehdi Rahimi-Nasrabadi ◽  
S. Pourmortazavi ◽  
Morteza Khalilian-Shalamzari ◽  
S. Hajimirsadeghi ◽  
M. Zahedi

AbstractA simple and fast chemical method was used for synthesis of manganese tungstate nanoplates in flower-like clusters; while Taguchi robust design was employed as statistical method for optimization of the experimental parameters for the procedure. Ultrafine manganese tungstate plates in flower-like clusters were synthesized via a direct precipitation method involving addition of manganese ion solution to the aqueous tungstate reagent. Effects of various reaction conditions such as manganese and tungstate concentrations, flow rate of reagent addition and reactor temperature on the thickness of the synthesized manganese tungstate plates were investigated experimentally. Analysis of variance (ANOVA) showed that manganese tungstate nanoplates could be effectively synthesized by tuning significant parameters of precipitation procedure. Meanwhile, optimum conditions for synthesis of MnWO4 nanoplates via this simple, fast, and cost effective method were proposed. The structure and composition of the prepared nanoplates under optimum conditions were characterized by EDX, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR spectroscopy, and photoluminescence techniques.

2018 ◽  
Vol 25 (04) ◽  
pp. 1850087
Author(s):  
DONGDONG LIANG ◽  
SHIMIN LIU ◽  
ZHINUO WANG ◽  
YU GUO ◽  
WEIWEI JIANG ◽  
...  

The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett–Joyner–Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000[Formula: see text]ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2019 ◽  
Vol 17 (1) ◽  
pp. 865-873 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua

AbstractThe nano aggregates of cobalt oxide (Co3O4) are synthesized successfully by adopting simple a co precipitation approach. The product obtained was further subjected to the calcination process that not only changed it morphology but also reduces the size of individual particles of aggregates. The prepared nano aggregates are subjected to different characterization techniques such as electron microscopies (scanning electron microscopy and transmission electron microscopy) and X-ray diffraction and results obtained by these instruments are analyzed by different software. The characterization results show that, although the arrangement of particles is compact, several intrinsic spaces and small holes/ pores can also be seen in any aggregate of the product. The as synthesized product is further tested for catalytic properties in thermal decomposition of ammonium perchlorate and proved to be an efficient catalyst.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Dhiraj A. Jamdade ◽  
Dishantsingh Rajpali ◽  
Komal A. Joshi ◽  
Rohini Kitture ◽  
Anuja S. Kulkarni ◽  
...  

Rapid, eco-friendly, and cost-effective one-pot synthesis of copper nanoparticles is reported here using medicinal plants like Gnidia glauca and Plumbago zeylanica. Aqueous extracts of flower, leaf, and stem of G. glauca and leaves of P. zeylanica were prepared which could effectively reduce Cu2+ ions to CuNPs within 5 h at 100°C which were further characterized using UV-visible spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, X-ray diffraction, and Fourier-transform infrared spectroscopy. Further, the CuNPs were checked for antidiabetic activity using porcine pancreatic α-amylase and α-glucosidase inhibition followed by evaluation of mechanism using circular dichroism spectroscopy. CuNPs were found to be predominantly spherical in nature with a diameter ranging from 1 to 5 nm. The phenolics and flavonoids in the extracts might play a critical role in the synthesis and stabilization process. Significant change in the peak at ∼1095 cm−1 corresponding to C-O-C bond in ether was observed. CuNPs could inhibit porcine pancreatic α-amylase up to 30% to 50%, while they exhibited a more significant inhibition of α-glucosidase from 70% to 88%. The mechanism of enzyme inhibition was attributed due to the conformational change owing to drastic alteration of secondary structure by CuNPs. This is the first study of its kind that provides a strong scientific rationale that phytogenic CuNPs synthesized using G. glauca and P. zeylanica can be considered to develop candidate antidiabetic nanomedicine.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2585 ◽  
Author(s):  
Ravi Mani Tripathi ◽  
Dohee Ahn ◽  
Yeong Mok Kim ◽  
Sang J. Chung

Recent developments in the area of nanotechnology have focused on the development of nanomaterials with catalytic activities. The enzyme mimics, nanozymes, work efficiently in extreme pH and temperature conditions, and exhibit resistance to protease digestion, in contrast to enzymes. We developed an environment-friendly, cost-effective, and facile biological method for the synthesis of ZnO-Pd nanosheets. This is the first biosynthesis of ZnO-Pd nanosheets. The synthesized nanosheets were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The d-spacing (inter-atomic spacing) of the palladium nanoparticles in the ZnO sheets was found to be 0.22 nm, which corresponds to the (111) plane. The XRD pattern revealed that the 2θ values of 21.8°, 33.3°, 47.7°, and 56.2° corresponded with the crystal planes of (100), (002), (112), and (201), respectively. The nanosheets were validated to possess peroxidase mimetic activity, which oxidized the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate in the presence of H2O2. After 20 min of incubation time, the colorless TMB substrate oxidized into a dark-blue-colored one and a strong peak was observed at 650 nm. The initial velocities of Pd-ZnO-catalyzed TMB oxidation by H2O2 were analyzed by Michaelis–Menten and Lineweaver–Burk plots, resulting in 64 × 10−6 M, 8.72 × 10−9 Msec−1, and 8.72 × 10−4 sec−1 of KM, Vmax, and kcat, respectively.


2017 ◽  
Vol 751 ◽  
pp. 807-812
Author(s):  
Tuangphorn Prasitthikun ◽  
X. Wu ◽  
Tsugio Sato ◽  
Charusporn Mongkolkachit ◽  
Pornapa Sujaridworakun

High efficiency BiOBr/GO composites photocatalyst were successfully synthesized via a facile precipitation method. The precursors were prepared by dissolving Bi (NO3)3.5H2O and KBr in glycerol and distilled water, respectively. Various amounts (0.1-2 wt%) of graphene oxide were added into the mixed solution precursors, and stirred at room temperature to get precipitated powder without further heat treatment. The obtained products were characterized for phase, morphology, optical properties and surface area by X-ray diffraction (XRD), transmission electron microscopy (TEM), filed-emission scanning electron microscopy (FE-SEM), UV-Vis diffuse reflection spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), respectively. The morphology and structure of as-synthesized samples were composed of numerous fine plates of BiOBr dispersed on the GO sheets. The photocatalytic activities of BiOBr/GO composites were evaluated by rhodamine B degradation under visible light irradiation. As the results, the significant increase in photodegradation of BiOBr/GO composite comparing with pure BiOBr was observed. Among all samples, the composite with 1 wt% of graphene oxide showed the highest photocatalytic performance.


NANO ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. 1750120 ◽  
Author(s):  
M. Gurubhaskar ◽  
Narayana Thota ◽  
M. Raghavender ◽  
Y. P. Venkata Subbaiah ◽  
G. Hema Chandra ◽  
...  

In this paper, we employed a simple and cost-effective thioglycolic acid (TGA) free hydrothermal method, based on thiourea hydrolysis of stannous chloride dihydrate [SnCl2.2H2O] at 160[Formula: see text]C–190[Formula: see text]C for 6[Formula: see text]h, for the synthesis of SnS nanoparticles. The effect of hydrothermal autoclave reaction temperature on various properties of SnS nanoparticles have been examined at length using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy attached with EDAX (FE-SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results suggest that the crystallization of orthorhombic SnS nanoparticles, with size varying from 3[Formula: see text]nm to 5[Formula: see text]nm, formed at R[Formula: see text]C. Further, the formation of SnS phase was confirmed by an IR Sn-S characteristic bands around 2350[Formula: see text]cm[Formula: see text], 1041[Formula: see text]cm[Formula: see text] and 570[Formula: see text]cm[Formula: see text], and four distinguished Raman peaks at 95[Formula: see text]cm[Formula: see text], 160[Formula: see text]cm[Formula: see text], 189[Formula: see text]cm[Formula: see text] and 220[Formula: see text]cm[Formula: see text]. The mechanism for the formation of SnS nanoparticles have been proposed and discussed. The SnS nanoparticles have exhibited reaction temperature dependent morphological features like nanoflowers, nanoflakes, spherical nanoparticles and nanogranules. The absorbance studies indicated both strong direct and weak indirect allowed transitions for SnS nanoparticles and the associated band gaps were found to be 1.5[Formula: see text]eV and 1.19[Formula: see text]eV, respectively. The dual band gap combination of SnS would favor strong direct absorption of carriers and improved minority carrier life time due to indirect nature, which means the grown particles are suitable for ideal absorber material for solar cell applications.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7673
Author(s):  
Ziyang You ◽  
Jing Xu

The usage of nanoscale calcium silicate hydrate (nano C-S-H) proved to have an excellent promotion effect on the early performance of concrete as nano C-S-H with ultra-fine particle size can act as seeding for cement hydration. Therefore, it is of importance to tune the particle size during the synthesis process of nano C-S-H. In this paper, the influence of several variables of the particle size distribution (PSD) of nano C-S-H synthesized by chemical co-precipitation method with the aid of polycarboxylate (PCE) was studied by orthogonal experimental design. In addition, the composition, microstructure, and morphology of the C-S-H/PCE nanocomposites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectrum. The results showed that the concentration of reactants had a significant impact on the PSD of C-S-H/PCE nanocomposites, followed by the dosage of dispersant. Ultrasonic treatment was effective in breaking the C-S-H/PCE aggregates with unstable agglomeration structures. The change in synthetic variables had a negligible effect on the composition of the C-S-H/PCE nanocomposites but had a significant influence on the crystallinity and morphology of the composites.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Deepak-George Thomas ◽  
Steven De-Alwis ◽  
Shalabh Gupta ◽  
Vitalij K. Pecharsky ◽  
Deyny Mendivelso-Perez ◽  
...  

A facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers. The latter is demonstrated by the excellent long-term dispersibility of exfoliated graphene in an aqueous BSA solution, which exemplifies a common biological medium. The development of such potentially scalable and toxin-free methods is critical for producing cost-effective biocompatible graphene, enabling numerous possible biomedical and biological applications. A methodical study was performed to identify the effect of time and varying concentrations of BSA towards graphene exfoliation. The fabricated product has been characterized using Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The BSA-FLG dispersion was then placed in media containing Astrocyte cells to check for cytotoxicity. It was found that lower concentrations of BSA-FLG dispersion had only minute cytotoxic effects on the Astrocyte cells.


Sign in / Sign up

Export Citation Format

Share Document